

National Jewish Health[®] Breathing Science is Life.

Mycobacterial Lab

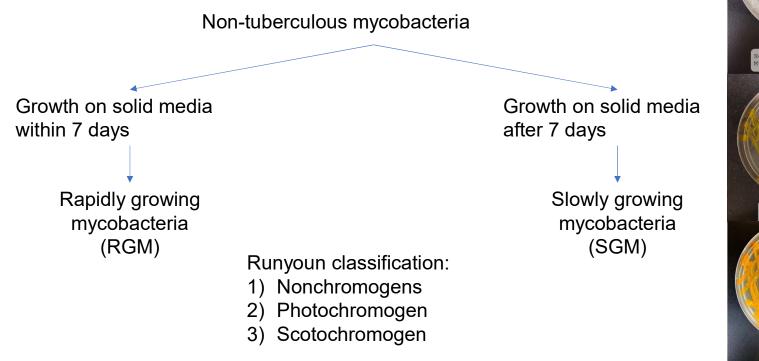
Reeti Khare, PhD Associate Professor

NTM Lecture Series for Providers

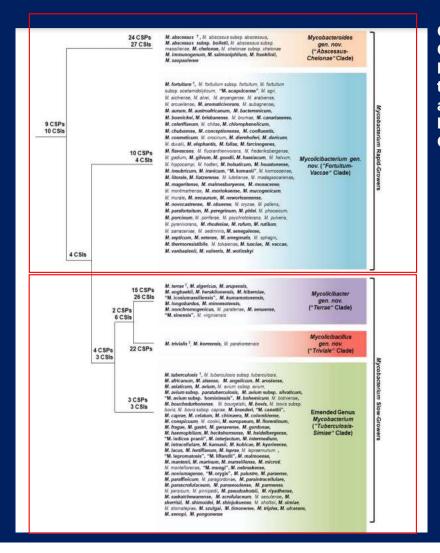
April 25-26, 2024

Conflicts of Interest

- Lab contract research: INSMED, Spero Therapeutics, RedHill Biopharma, AN2 Therapeutics, Paratek Pharmaceuticals, Mannkind Corporation
- Lab research grants: Illumina
- Lab reagents received: BioMerieux



Learning objectives


- Understand smear and culture methods for NTM
- Evaluate methods of NTM identification
- Review methods for NTM susceptibility testing

Classification and taxonomy

Gupta et al. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol, 2018

Slowly growing mycobacteria (SGM)

Mycolicibacter

M. terrae ^T, M. algericus, M. arupensis, M. engbaekii, M. heraklionensis, M. hiberniae, "M. icosiumassiliensis", M. kumamotonensis, M. longobardus, M. minnesotensis, M. nonchromogenicus, M. paraterrae, M. senuense, "M. sinensis", M. virginiensis

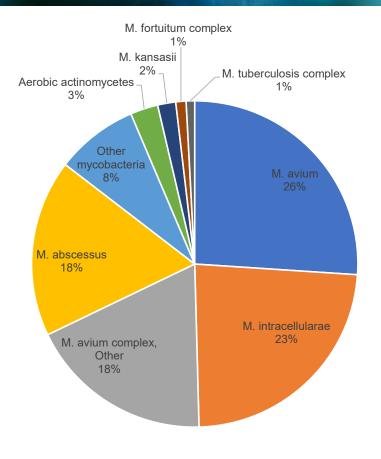
Mycolicibacillus sp.

M. trivialis ^T, M. koreensis, M. parakoreensis

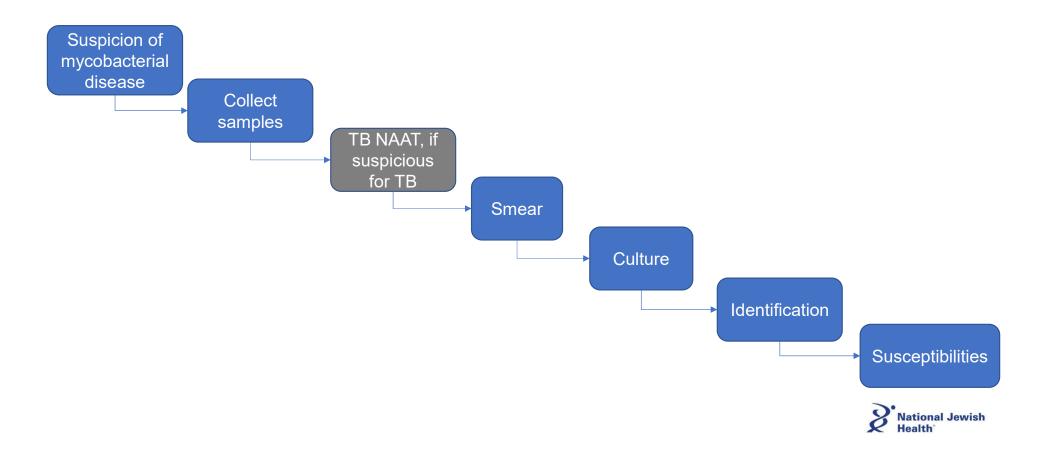
Mycobacterium sp.

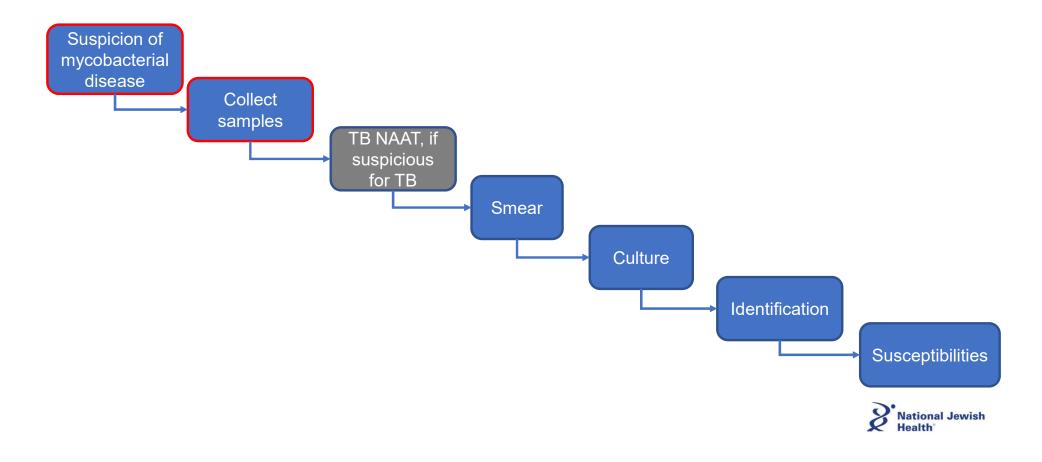
M. tuberculosis ^T, M. tuberculosis subsp. tuberculosis, M. africanum, M. alsense, M. angelicum, M. arosiense, M. asiaticum, M. avium, M. avium subsp. avium, M. avium subsp. paratuberculosis, M. avium subsp. silvaticum, "M. avium subsp. hominissuis", M. bohemicum, M. botniense, M. bouchedurhonense, M. bourgelatii, M. bovis, M. bovis subsp. bovis, M. bovis subsp. caprae, M. branderi, "M. canettii", M. caprae, M. celatum, M. chimaera, M. colombiense, M. conspicuum, M. cookii, M. europaeum, M. florentinum, M. fragae, M. gastri, M. genavense, M. gordonae, M. haemophilum, M. heckshornense, M. heidelbergense, "M. indicus pranii". M. interiectum. M. intermedium. M. intracellulare, M. kansasii, M. kubicae, M. kyorinense, M. lacus, M. lentiflavum, M. leprae, M. lepraemurium , "M. lepromatosis", "M. liflandii", M. malmoense, M. mantenii, M. marinum, M. marseillense, M. microti, M. montefiorense, "M. mungi", M. nebraskense, M. noviomagense, "M. orygis", M. palustre, M. paraense, M. paraffinicum, M. paragordonae, M. paraintracellulare, M. parascrofulaceum, M. paraseoulense, M. parmense, M. persicum, M. pinnipedii, M. pseudoshotsii, M. riyadhense, M. saskatchewanense, M. scrofulaceum, M. seoulense, M. sherrisii. M. shimoidei. M. shiniukuense. M. shottsii. M. simiae. M. stomatepiae, M. szulgai, M. timonense, M. triplex, M. ulcerans, M. xenopi, M. yongonense, M. vulneris

Rapidly growing mycobacteria (RGM)


Mycobacteroides sp.

M. abscessus ^T, M. abscssus subsp. abscessus, M. abscessus subsp. bolletii, M. abscessus subsp. massiliense, M. chelonae, M. chelonae subsp. chelonae M. immunogenum, M. salmoniphilum, M. franklinii, M. saopaulense


Mycolicibacterium sp.


M. fortuitum ^T, M. fortuitum subsp. fortuitum, M. fortuitum subsp. acetamidolyticum, "M. acapulcense", M. agn, M. aichiense, M. alvei, M. anvangense, M. arabiense, M. arcueilense, M. aromaticivorans, M. aubagnense, M. aurum, M. austroafricanum, M. bacteremicum, M. boenickei, M. brisbanense, M. brumae, M. canariasense, M. celeriflavum, M. chitae, M. chlorophenolicum, M. chubuense, M. conceptionense, M. confluentis, M. cosmeticum, M. crocinum, M. diernhoferi, M. doricum, M. duvalii, M. elephantis, M. fallax, M. farcinogenes, M. flavescens, M. fluoranthenivorans, M. frederiksbergense, M. gadium, M. gilvum, M. goodii, M. hassiacum, M. helvum, M. hippocampi, M. hodleri, M. holsaticum, M. houstonense, M. insubricum, M. iranicum, "M. komanii", M. komossense, M. litorale, M. Ilatzerense, M. lutetiense, M. madagascariense, M. mageritense, M. malmesburyense, M. monacense, M. montmartrense, M. moriokaense, M. mucogenicum, M. murale, M. neoaurum, M. neworleansense, M. novocastrense, M. obuense, M. oryzae, M. pallens, M. parafortuitum, M. peregrinum, M. phlei, M. phocaicum, M. porcinum, M. poriferae, M. psychrotolerans, M. pulveris, M. pyrenivorans. M. rhodesiae, M. rufum, M. rutilum, M. sarraceniae, M. sediminis, M. senegalense, M. septicum, M. setense, M. smegmatis, M. sphagni, M. thermoresistibile, M. tokaiense, M. tusciae, M. vaccae, Jewish M. vanbaalenii, M. vulneris, M. wolinskyi

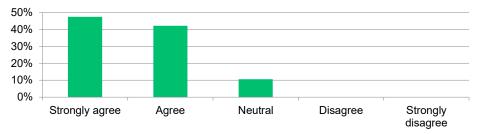
Most common organisms seen in our lab

Lab tests to detect mycobacteria

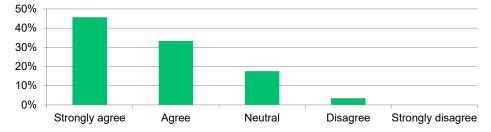
- NTM exist naturally in the environment, especially water
- NTM can be part of the normal flora¹
 - Oral flora (likely transient) in 26-33% of people²
 - Presence of NTM without progressive disease
- Detection \neq infection

¹ Thornton et al. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. European Respiratory Review 2021 30: 200299
² Wali et al: The presence of atypical mycobacteria in the mouthwashes of normal subjects: role of tap water and oral hygiene. Ann Thorac Med 2008; 3: pp. 5-

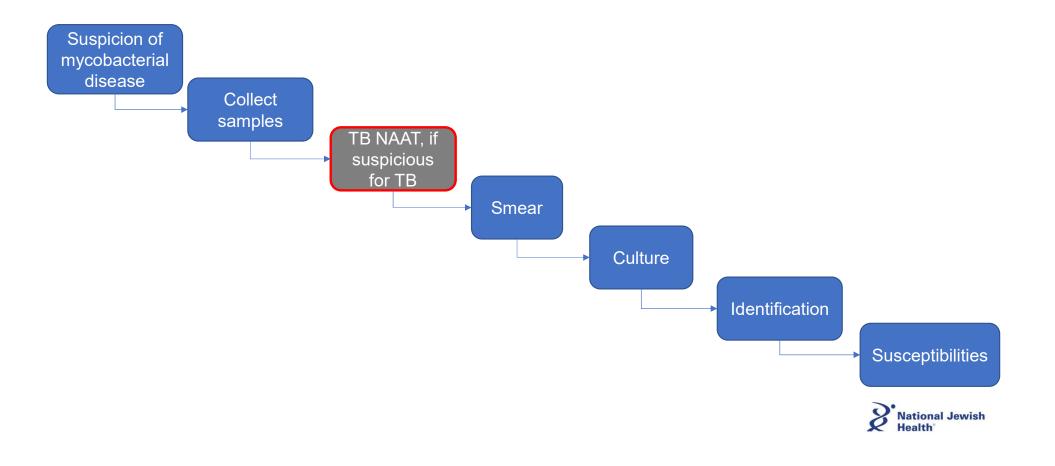
Specimen collection


- Collect a "good" sputum (no saliva)
 - Recommended: 5-10 ml¹
 - Expectorated or induced
- Multiple sputum specimens
 - Positivity over time²
 - ≥ 2 sputum cultures positive is more likely to be clinically significant (as high as 98% agreement for clinically significant MAC)³
- BALs/Bronchial washings may be more sensitive than sputum
- Home sputum collection

¹Warren et al. A minimum 5.0 ml of sputum improves the sensitivity of acid-fast smear for Mycobacterium tuberculosis, Am J Respir Crit Care Med, 2000, ²van Ingen. Microbiological Diagnosis of Nontuberculous Mycobacterial Pulmonary Disease. Clinics in Chest Medicine, 2015-03-01, Volume 36, Issuer, Pages 43494ish ³Daley et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clinical Infectious Diseases, 2020


Home sputum collection

- Allows patients to collect at home
- Allows direct access to a full-service mycobacteriology lab


My patients would prefer to collect their specimens in the comfort and privacy of their home rather than onsite with a health care professional.

My patients would prefer not to come on-site for collections because of distance or mobility reasons.

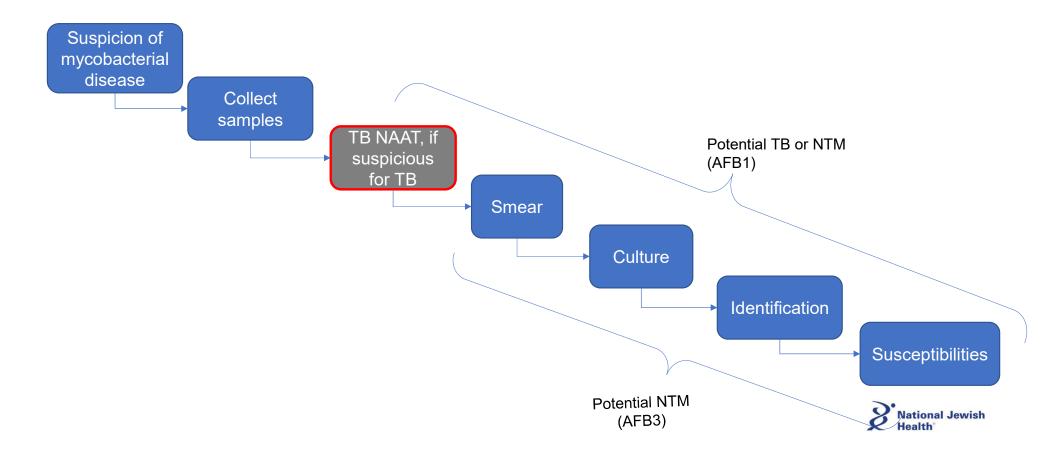
¹ Khare et al. Evaluation of Home Collected Sputum for Increased Access to High Quality Laboratory Testing of Nontuberculous Mycobacteria. In proceeding the structure of the second s

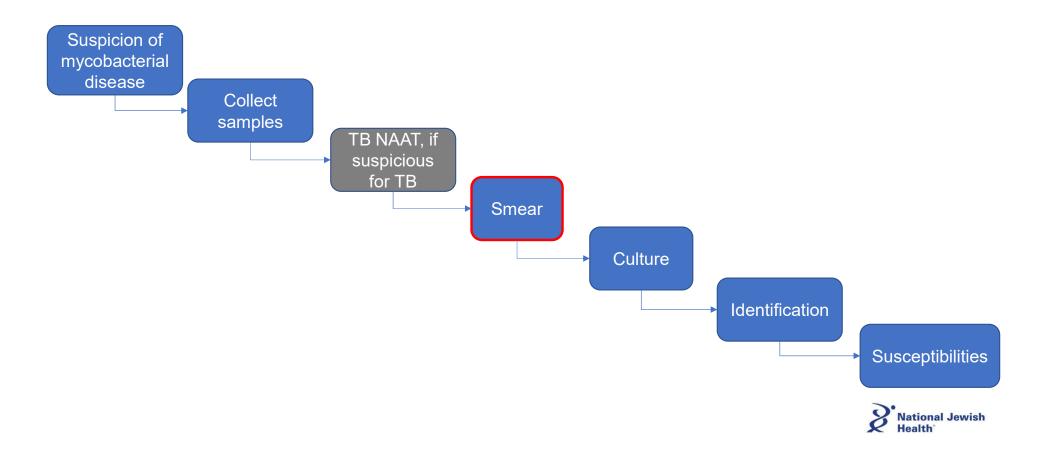
TB-NAAT assays from specimen

- NAAT: nucleic acid amplification test
- Lab developed tests
- Cepheid Xpert MTB/Rif
 - Real-time PCR
 - Report and rifampin resistance

https://www.cepheid.com/e n_US/tests/Critical-Infectious-Diseases/Xpert-MTB-RIF

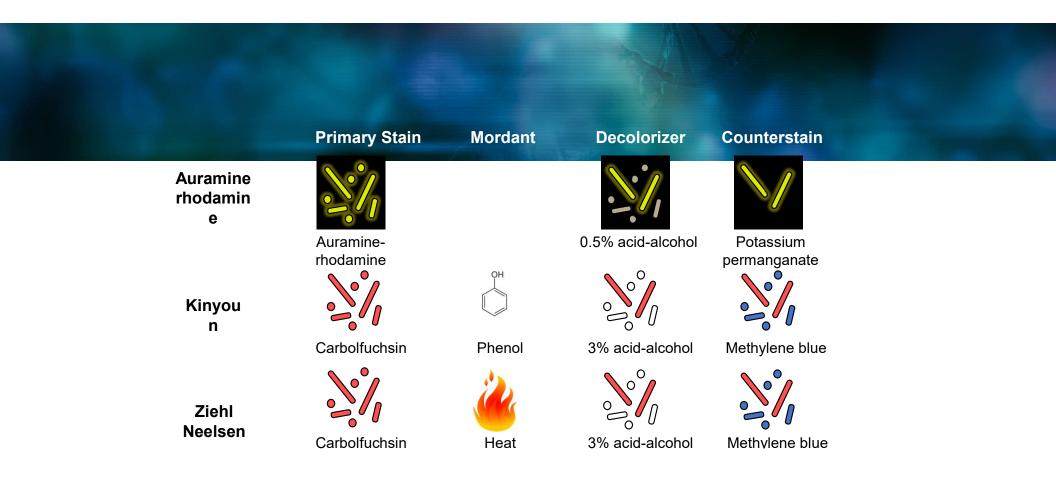
МТВ	Xpert MTB/RIF						
Source	Population	Sensitivity (%)	Specificity (%)	Rifampin		Xpert MTB/RIF	
				Source	Population	Sensitivity	Specificity
Sputum/	Adult	85 (81 for HIV+)	98			(%)	(%)
Pulmonary	Children	65 (72 for HIV+)	99	Pulmonary	Adults	96	98
Gastric aspirate	Children	73	98-99	Extrapulmonary	Adults	96	99
Pleural fluid	Adults	50	99				
Peritoneal fluid	Adults	59	97				
Cerebrospinal	Adults	70	97				
fluid							
Synovial fluid	Adults	97	94				
Lymph node	Adults	89	86	¹ Module 3: Diagnosis - Rapid diagnostics for tuberculosis			
aspirate					detection. World Health Organization, Geneva, 2020 ² Rowlinson, Musser, Khare. <i>Mycobacterium tuberculosis</i> Complex, Manual of Clinical Microbiology, 13 th ed., in review, 2022		
Lymph node	Adults	82	79				
biopsy							
Urine	Adults	85	97				

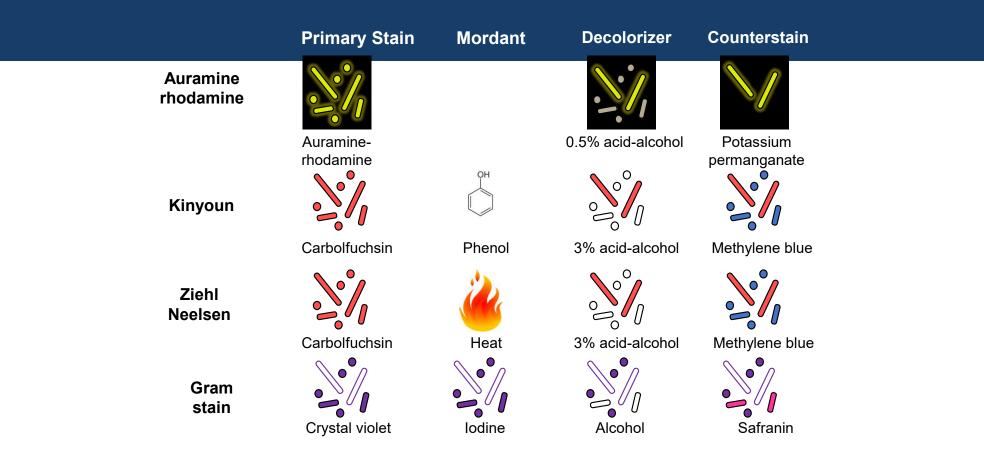

What about NTM-NAAT for direct detection from sputum?



What about an NTM-NAAT?

- Change in management?
 - Not like TB, which is always considered a pathogen!
 - A positive result is not necessarily useful (can represent contamination)
 - A negative result is not necessarily useful (false negatives)
- Greater diversity that is needed to be detected
- No assays easily available in the US

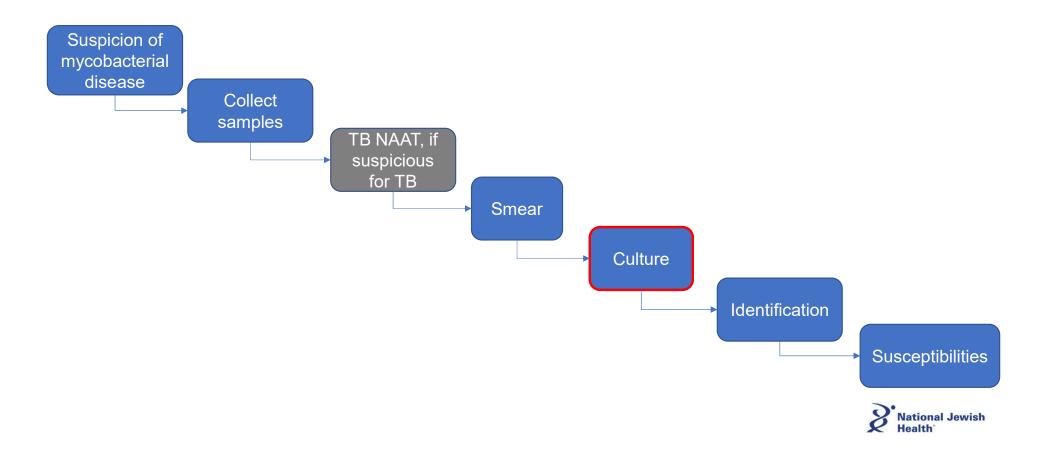




-

Ziehl-Neelsen

Auramine


O'Shea, Wilson. <u>https://www.semanticscholar.org/paper/Tuberculosis-and-the-military.-O%E2%80%99Shea-</u> Wilson/6a18505cd7cce1cbde4df1409085862d8a7cd376

AFB Smears

- Ziehl Neelsen: sensitivity = 20-70%; need ~10⁴-10⁵ bacilli/ml
- Auramine-rhodamine smears: ~5-10% more sensitive
- Turnaround time: 24 hours

Somoskovi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925666/#R2</u> Cattamanchi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754584/</u> Singh, Parija. <u>https://www.ncbi.nlm.nih.gov/pubmed/10772577</u> Azadi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897959/</u> Ghiasi et al. <u>https://link.springer.com/article/10.1007/s40475-015-0043-1</u>



Sample Processing

Sample Processing

2016. 7.2 General Mycobacterial Procedures, p.7.2.2.1-7.2.2.5. Leber AL Clinical Microbiology Procedures Handbook, 4th Edition. ASM Press, Washington, DC.

Culture techniques

• Liquid cultures

- Supplements
 - Sugars (dextrose or glucose)
 - Oleic acid
 - Catalase
- Antibiotic cocktails
- More sensitive than solid cultures.
- More rapid growth compared to solid culture

VersaTREK Myco

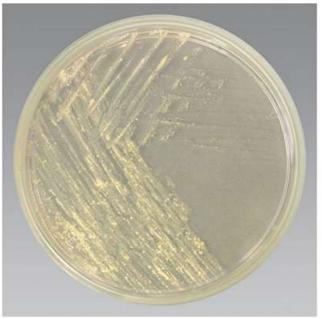
MGIT tubes

https://www.fishersci.com/s hop/products/versatrekmyco-media-6/Y711142

Positive MGIT

Positive MGIT under UV

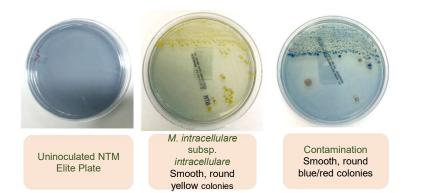
Culture techniques


- Solid culture
 - Lowenstein Jensen agar
 - contains egg and malachite green
 - Middlebrook agar
 - Contains casein hydrolysate (for MDR TB)

LJ

https://www.fishe rsci.ca/shop/prod ucts/lowensteinjensen-mediumlj/p-4523753

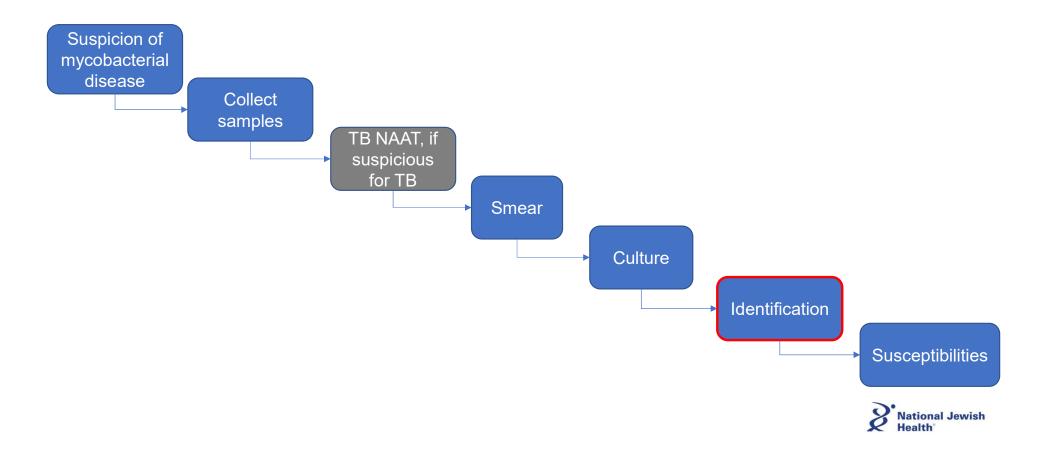
Middlebrook 7H10 or 7H11



https://www.fishersci.ca/shop/products/remel-middlebrook-7h11-agar/r01605

Newer media

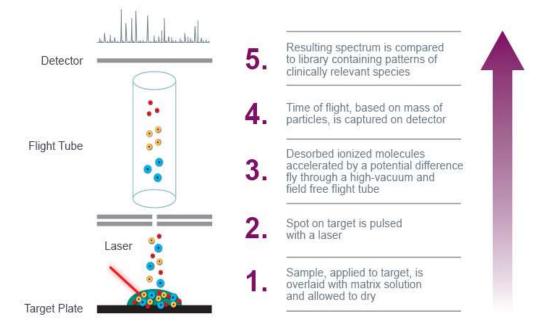
- NTM Elite agar (BioMerieux, previously known as RGM medium)
 - Selective media, but also some differentiation
 - Reduced presence of contamination from ~30% to 3%
 - Addition of this media may increase overall sensitivity of culture (from 91% to 100%)
 - Picks up unusual NTM (e.g. *M. llatzerense*)


Media type	Sensitivity
MGIT broth	77.5% (69/89)
7H11/7H11S biplates	76.4% (68/89)
NTM Elite	57.3% (51/89)
LJ media	29.2% (26/89)

Caldwell M, Tisdale J, Khare R. Improved recovery of nontuberculous mycobacteria in culture with adjunctive use of a selective agar. J Clin Microbiol. 2024 Mar Broncano-Lavado A et al. Clinical Evaluation of Nontuberculous Mycobacteria (NTM) Elite Agar, a New Medium for the Isolation of NTM: a Multicenter Station Climitation Climitation of NTM. 2023 Apr 20

Special conditions for fastidious bugs

- · Culture incubated for 6-8 weeks
- Temperatures
 - 35-37°C: routine
 - 42°C: *M. xenopi*
 - 30-32°C: M. marinum, M. haemophilum, M. ulcerans
- Supplements:
 - Hemin, ferric ammonium citrate M. haemophilum
 - Egg yolk M. ulcerans
 - Mycobactin J M. genavense, M. avium subsp. paratuberculosis
- Media
 - NTM Elite M. llatzerense



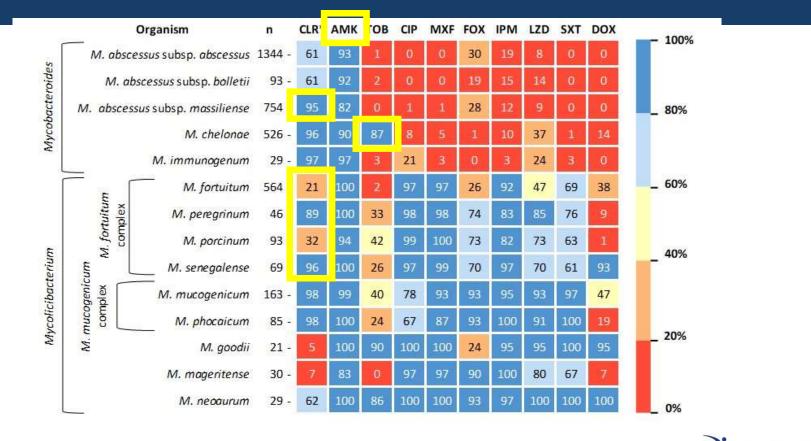
Identification techniques

- Gross morphology Not very useful
- MALDI-TOF mass spectrometry
- PCR-based line probes
- Sequencing

MALDI-TOF Mass Spectrometry

https://www.beckmancoulter.com/products/microbiology/maldi-tof-mass-spectrometry

Bruker



Why differentiate within complexes and subspecies?

RGM Antibiogram

National Jewish

Health

Hunkins, Calado, Eddy, Daley, Khare. In vitro Susceptibility Patterns for Rapidly Growing Nontuberculous Mycobacteria in the United States, DMID, 2022

SGM Antibiogram

	.	AM	ик	CI	LR	L	ZD	M	XF	C	IP	R	FB	R	IF	DC	х	м	IIN	S	хт		
	Organism	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S		—100%
	 M. avium	3412	65	3404	94	337	6	37	27	364	-	3416	-	3447	-	1603	-	1218	-	1605	-		-100%
complex	M. bouchedurhonense	47	91	46	96	45 <mark>-</mark>	31	46	39	<mark>1</mark> 6	-	47	-	46	-	30	-	28	-	30	-		
Ē	M. colombiense	32	91	32	100	32	22	32	41	32	-	32	-	31	-	19	-	14	-	19	-		
ŭ	M. intracellulare subsp. chimaera	1322	81	1312		129	2	29	4	298	-	1315	-	1323	-	603	-	453	-	603	-		
avium	M. intracellulare subsp. intracellulare		71	2897	96	287	2	37	6	373	-	2914	-	2919	-	1311	-	948	-	1307	-		
	M. intracellulare subsp. yongonense	69	64	68	96	66	11	56	20	56	-	68	-	68	-	12	-	9	-	12	-		
Ŋ.	M. marseillense	80	82	79	100	79	9	78	15	78	-	80	-	80	-	45	-	36	-	45	-		— 80%
l	M. timonense	27	80	27	100	27	19	27	22	27	-	27	-	27	-	11	-	8	-	11	-		
	M. arupense		49	157	97	155	9	15,	-10	- 57		158	97	159	18	85		70	3	85	31		
	M. asiaticum	54	93	54	100	54	11	54	65	54		54	59	55	4	25	0	14	-	25	40		
	M. europaeum	18	94	17	100	17	24	17	18	17		18	100	18	50	11	-	10	-	11	-		
	M. gordonae	144	94	145	99	143	63	144	59	144	15	145	93	145	23	144	14	144	17	144	62		
	M. haemophilum	48	100	49	100	48	100	48	100	50	82	50	100	49	100	0	-	0	-	0	-		— 60%
	M. interjectum	46	87	45	100	45	62	46	61	46		46	96	46	59	23		17	0	23	61		
	M. kansasii	196	90	242	98	214	80	230	65	201	7	192	98	214	63	188	1	189	1	190	48		
	M. kubicae	31	94	31	90	31	42	31	71	31	10	31	90	31	19	16	19	10	-	16	50		
	M. lentiflavum	184	82	185	100 96	184	16 70	184 23	32 74	182	15 30	186	98	185 23	32 30	78 8	5	56 5	2	79 8	39		
	M. malmoense M. marinum	24 207	83 99	23 208	96 99	23 205	70 96	23	57	23 207	30 27	24 60	88 100	23 61	30 57	8 208	- 34	5 208	- 37	8 208	- 77		
	M. nebraskense	38	97	37	100	38	71	37	70	37	46	37	95	38	84	13	54	9	57	13	-		- 40%
	M. nebruskense M. paraense	27	85	27	93	27	70	27	26	27	11	27	85	27	52	15	0	13	2	15	60		
	M. paraffinicum	83	89	82	93 98	82	29	82	33	82	9	83	83 84	83	61	33		30	3	33	33		
	M. paragordonae	19	100	20	95	18	44	20	70	20	10	19	84	19	37	19		19	0	19	58		
	M. paragoraonae M. parascrofulaceum	39	92	39	95	39	46	39	33	39	0	39	97	39	72	22	0	12	-	22	14		
	M. scrofulaceum	29	97	29	86	29	34	29	48	29		29	100	29	45	11	-	6	-	11	-		
	M. shimoidei	19	95	21	90	16	94	21	90	21	81	17	100	21	24	2	-	2	-	2	-		— 20%
	M. simiae	156	74	156	82	155	2	155	13	155		155	37	156	3	58	0	44	0	59	8		20%
	M. stomatepiae	18	78	18	94	18	33	18	33	18		18	83	18		7	-	3	-	7	-		
	M. szulgai	22	05	26	100	23	65	24	25	26		25	76	24	38	21	0	21	5	21	43		
	M. terrae	45	56	45	96	44	7	45	40	46	15	46	93	48	12	28		17	0	28	43		
	M. triplex	34	71	34	100	34	50	34	29	34		34	100	34	47	16		13	-	16	38		
	M. xenopi	62	92	65	98	65	89	68	82	64	41	60	98	62	39	58		58	3	58	67		0% al Jewish
		-																				x	Health

Calado, Nguyen, Hunkins, Daley, Khare. In vitro Susceptibility Patterns for Slowly Growing Nontuberculous Mycobacteria in the USA from 2018-2022, JAC,

SGM Antibiogram

	Organism	AN	ик	CL	.R	LZ	D	м	XF	С	IP	R	в	R	IF	D	ох	м	IN	S	хт		
	Organism	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	—100%	EMB
.	M. avium	3412	65	3404	94	3377		3375	27	3364	-	3416	-	3447	-	: 603	-	1218	-	1605	-	-100%	
complex	M. bouchedurhonense	47	91	46	96	45	31	46	39	46	-	47	-	46	-	30	-	28	-	30	-		
Ĕ	M. colombiense	32	91	32	100	32	22	32	41	32	-	32	-	31	-	.9	-	14	-	19	-		
2	M. intracellulare subsp. chimaera	1322	81	1312	98	1299		1299		1298	-	1315	-	.323	-	03	-	453	-	603	-		
avium	M. intracellulare subsp. intracellulare	2916	71	2897	96	2878		2877		2873	-	2914	-	2919	-	11	-	948	-	1307	-		
	M. intracellulare subsp. yongonense	69	64	68	96	66	11	66	20	66	-	68	-	68	-	.2	-	9	-	12	-		
Ň.	M. marseillense	80	82	79	100	79		78	15	78	-	80	-	80	-	<mark>ا</mark> 5	-	36	-	45	-	- 80%	
L	M. timonense	27	89	27	100	27	19	27	22	27	-	27	-	27	-	.1	-	8	-	11	<u> </u>		
	M. arupense	158	49	157	97	155		157	48	157		158	97	159	18	85	1	70	3	85	31		
	M. asiaticum	54	93	54	100	54	11	54	65	54		54	59	55	4	25	0	14	-	25	40		
	M. europaeum		94	17	100	17	24	17	18	17		18	100	18	50	11	-	10	-	11	-		
	M. gordonae		94	145	99	143	63	144	59	144	15	145	93	145	23	144	14	144	17	144	62		
	M. haemophilum	48	100	49	100	48	100	48	100	50	82	50	100	49	100	0	-	0	-	0	<u> </u>	<mark>— 60%</mark>	
	M. interjectum	46	87	45	100	45	62	46	61	46		46	96	46	59	23	4	17		23	61		
	M. kansasii		90	242	98	214	80	230	65	201		192	98	214	63	188	1	189	1	190	48		
	M. kubicae	31	94	31	90	31	42	31	71	31	10	31	90	31	19	16	19	10	-	16	50		
	M. lentiflavum	184	82	185	100	184	16	184	32	182	15	186	98	185	32	78	5	56	2	79	39		
	M. malmoense	24	83	23	96	23	70	23	74	23	30	24	88	23	30	8	-	5	-	8	-		
	M. marinum	207	99	208	99	205	96	207	57	207	27	60	100	61	57	208	34	208	37	208	77	— 40%	
	M. nebraskense	38	97	37	100	38	71	37	70	37	46	37	95	38	84	13	-	9	-	13	-		
	M. paraense	27	85	27	93	27	70	27	26	27	11	27	85	27	52	15	0	13	-	15	60		
	M. paraffinicum	83	89	82	98	82	29	82	33	82	9	83	84	83	61	33	6	30		33	33		
	M. paragordonae	19	100	20	95	18	44	20	70	20	10	19	84	19	37	19	5	19	0	19	58		
	M. parascrofulaceum		92	39	95	39	46	39	33	39	0	39	97	39	72	22	0	12	-	22	14		
	M. scrofulaceum		97	29	86	29 16	34 94	29 21	48 90	29	7 01	29	100 100	29 21	45	11	-	6	-	11	-		
	M. shimoidei M. simiae	19 156	95 74	21 156	90 82	16 155	94 2	21 155	13	21 155	81 1	17 155	37	21 156	24 3	2 58	0	2 44	0	2 59	8	- 20%	
	M. simiae M. stomatepiae	156	74 78	156	82 94	155	2 33	155	33	155	0	155	37 83	156	3 0	58 7	- 0	44 3	- 0	59	0		
	M. stomatepiae M. szulgai	22	78 95	26	94 100	23	53 65	24	33 25	26	4	25	83 76	18 24	38	21	0	21	5	21	43		
	M. terrae	45	95 56	45	96	23 44	7	24 45	25 40	46	4 15	25 46	93	24 48	38 12	21	0	17		21	43		
	M. terrae M. triplex	45 34	71	45 34	96 100	44 34	50	45 34	40 29	46 34	15 3	46 34	93 100	48 34	47	28 16	0	17	0	16	38		
	M. triplex M. xenopi	62	92	54 65	98	54 65	89	54 68	82	54 64	5 41	54 60	98	54 62	39	58	5	58	3	58	67		
	Wi. Xenopi	02	52	05	- 50	05		00	02		71	00	- 50	02	35	50		50		50		— 0% K Health	al Jewish

Calado, Nguyen, Hunkins, Daley, Khare. In vitro Susceptibility Patterns for Slowly Growing Nontuberculous Mycobacteria in the USA from 2018-2022, JAC,

Rifampin and Ethambutol

M62, 1st ed.

Table 3. Antimycobacterial Agents and Breakpoints for Testing MAC

QC recommendations (see Table 12 for acceptable QC ranges):

- Routine QC strain:
- M. marinum ATCC^{®*} 927

Supplemental QC strain:

• Staphylococcus aureus ATCC[®] 29213

General Comments

(1 Although ethambutol, rifampin, and rifabutin are useful clinically, breakpoints for determining susceptibility and resistance have not been established, and previous studies show that there is no correlation between *in vitro* MIC results and clinical response in patients with MAC.^{1,2} Streptomycin may be used in place or annikacm. However, because no studies correlating streptomycin whice values and clinical response have been performed, if the drug is tested, only the MIC value should be reported.

M62, 1st ed. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp. and other Aerobic Actinomycetes Chational Jewish

Rifampin and Ethambutol

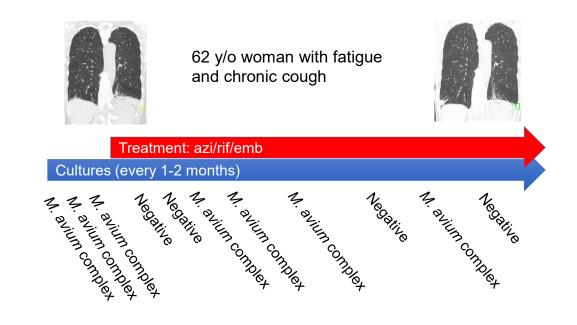
CLINICAL THERAPEUT

In Vitro MIC Values of Rifampin and Ethambutol and Treatment Outcome in *Mycobacterium avium* Complex Lung Disease

Byoung Soo Kwon,^a [©]Mi-Na Kim,^b Heungsup Sung,^b Younsuck Koh,^a Woo-Sung Kim,^a Jin-Woo Song,^a Yeon-Mok Oh,^a Sang-Do Lee,^a Sei Won Lee,^a Jae-Seung Lee,^a Chae-Man Lim,^a Chang-Min Choi,^a Jin-Won Huh,^a Sang-Bum Hong,^a Sojung Park,^c Tae Sun Shim,^a Yong Pil Chong,^d Kyung-Wook Jo^a

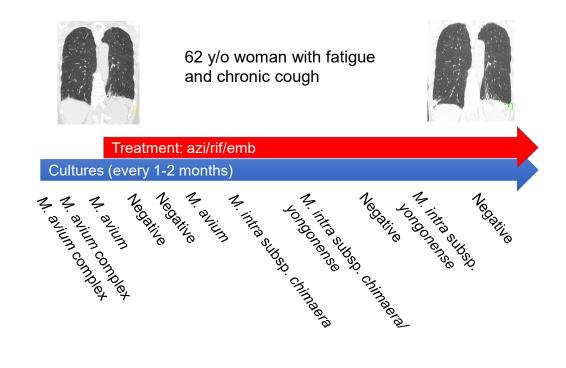
2018

"These findings suggest that the *in vitro* MICs of rifampin and ethambutol may be related to treatment outcome in MAC-LD."



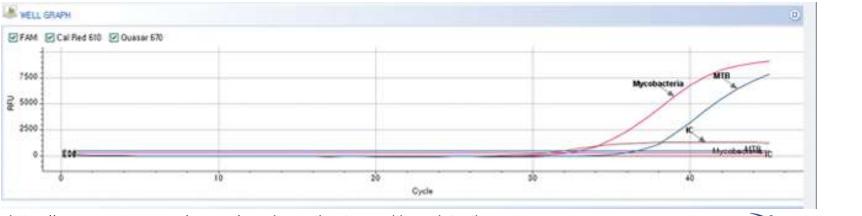
Why differentiate within complexes and subspecies?

- Different treatment patterns
- Different diseases and risk factors (*M. avium* subsp. *paratuberculosis*)
- Is prolonged positivity due to re-infection with a similar species?


Mixed Infection/Re-infection with Different MAC Species

Modified from slide created and contributed by Dr. Chuck Daley

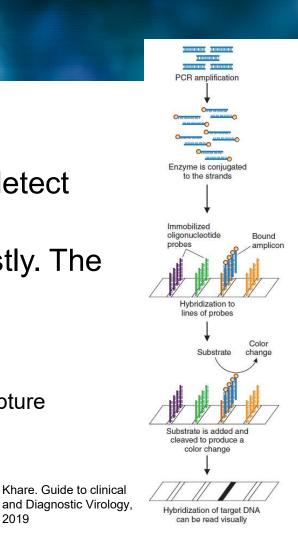
Mixed Infection/Re-infection with Different MAC Species



Slide created and contributed by Dr. Chuck Daley

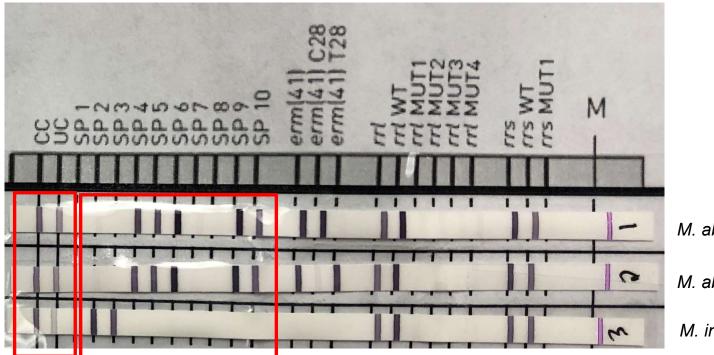
Real-time PCR

- E.g. Anyplex MTB/NTM Real-time Detection (Seegene, Korea)
- Limitations: only a few targets because of fluorescence overlap



National Jewish

https://www.seegene.com/assays/anyplex_mtb_ntm_realtime_detection


Line probe assays (LPAs)

- Advantages: better accuracy, better speciation/subspeciation, can simultaneously detect drug resistance markers.
- Limitations: Not available in the US ☺; also costly. The line probe is labor-intensive and subjective.
- How do they work?
 - Step 1: multiplex-PCR
 - Step 2: Amplicons are bound onto a membrane containing capture probes for identification and drug resistance genes
 - Step 3: Pattern of binding is read

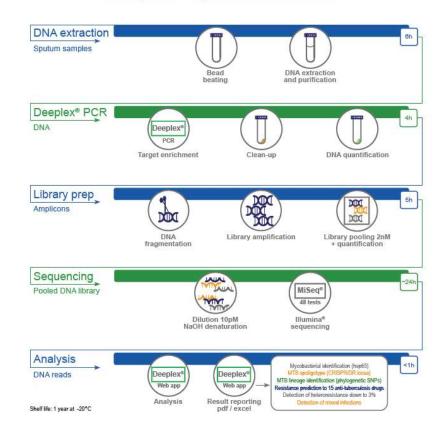
2019

LPA results

M. abscessus subsp. *abscessus*

M. abscessus subsp. *abscessus*

M. intracellulare subsp. chimaera



Deeplex Myc-TB

- Targeted NGS for the hsp65 gene
- Advantages: >140 NTM
- Limitations: cost, technical expertise needed

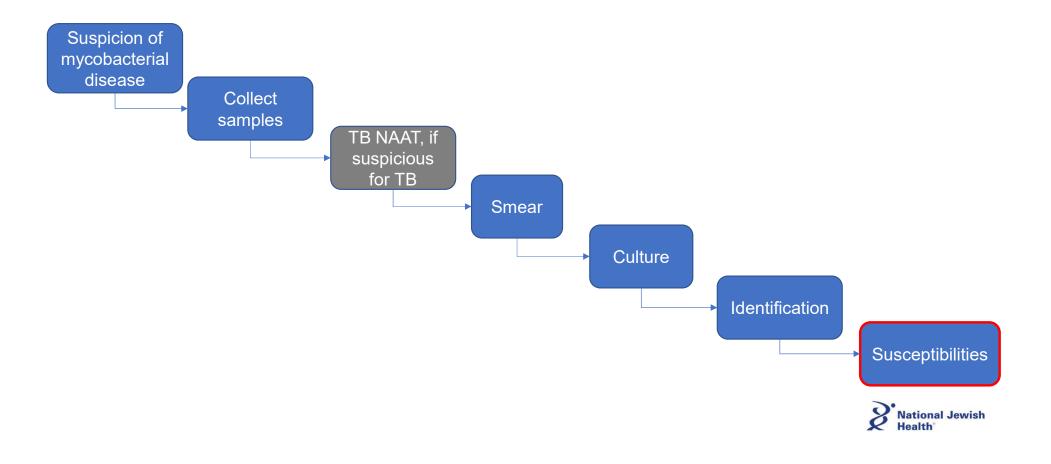
Deeplex Myc-TB, Technical Note, Deeplex, 2020

Deeplex[®] Myc-TB workflow

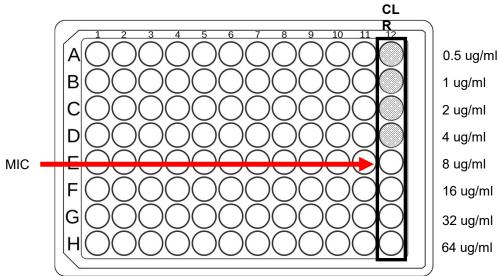
Name of Assay		ID for MTB C		# of NTM species or subspecies identified	Manufacturer						
	Intended for sa	mples	(e.g. s	outum) only		Name of Assay	Method		ID of	# of NTM	Manufacturer
VER 1.074	NAAT (Line probe)	Y	Y	20	Hain Lifescience, Germany			MTB C	NTM	species or subspecies	
	NAAT (Real-time PCR)	Y	Y	0; (generic NTM detection)	LG Life Science, Korea		NTM 6			identified	
	NTM from	sputur	n and i						olates o		
	NAAT (Real-time PCR)		Y	6	YD Diagnostics, Korea	GenoType NTM-DR VER 1.0 ^{74,85}	NAAT (Line probe)	Ν	Y	7	Hain Lifescience, Germany
Two ⁷⁶	conventional	Y	Y	8	YD Diagnostics, Korea	GenoType Mycobacterium AS ⁷⁴	NAAT (Line probe)	N	Y	19	Hain Lifescience, Germany
MolecuTech REBA Myco-ID ⁷⁶	PCR) NAAT (Reverse Blot Hybridization)	Y	Y	19	YD Diagnostics, Korea	GenoType Mycobacterium CM VER 2.0 ⁷⁴	NAAT (Line probe)	Y	Y	20	Hain Lifescience, Germany
MolecuTech Real MTB-ID ⁷⁶	NAAT (Real-time PCR)		Y	6	YD Diagnostics, Korea	FluoroType Mycobacteria VER 1.0 ⁸⁶	NAAT (Asymmetrical FRET PCR)	N	Y	32	Hain Lifescience, Germany
NTM+MDRTB II (Previously called NTM+MDRTB	NAAT (Line probe)	Y	Y	3	Nipro, Japan	MolecuTech MTB-ID V3 ⁷⁶	NAAT (Nested, conventional PCR)	Y	Y	11	YD Diagnostics, Korea
	NAAT (Real-time PCR)	Y	Y	0; generic NTM detection	Seegene, Korea	Speed-Oligo Mycobacteria ⁸⁷	NAAT (Line probe)	Y	Y	14	Vircell, Spain
PowerChek MTB/NTM		Y	Y	Geleonon	Kogene Biotech, Korea	INNO-LiPA Mycobacteria v2 ⁸⁸	NAAT (Line probe)	Y	Y	16	Fujirebio, Japan
Deeplex Myc-TB ⁸⁰		Y	Y	>100	Genoscreen, France						
	(Conventional PCR, 2 reactions)	I	Y	detection	Biocore, Korea						
TB/NTM PCR (one tube) ⁸²	(Conventional PCR, single reaction)		Y	0; generic NTM detection						and Antimicrobi Testing of Nonti	
TB/NTM Real Time PCR ⁸³	NAAT (Real-time PCR)	Y	Y	0; generic NTM detection	Biocore, Korea						Clinics in Chest eparation, 2023

Sanger Sequencing

- Step 1: amplify a target gene
 - Most common gene for identification
 - rpoB encodes subunit of bacterial RNA polymerase¹
 - 16S -rDNA encoding the 30S ribosomal rRNA
 - 16S-23S ITS intergenic spacer region
 - *hsp65* encodes a bacterial heat shock protein
- Step 2: sequence the amplified gene
- Step 3: compare the sequence to a database

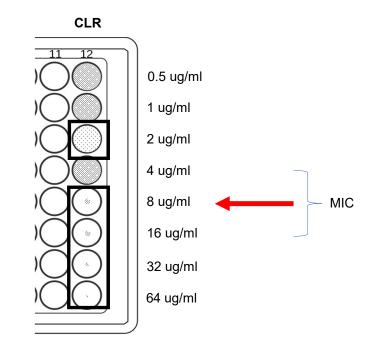


https://www.thermofisher.com/us/en/home/lifescience/sequencing/sanger-sequencing/sanger-sequencingtechnology-accessories/3730-series-geneticanalyzers/jcr:content/MainParsys/image_2014.img.full.high.jpg/ 1678310442624.jpg


Simmon et al. Simultaneous Sequence Analysis of the 16S rRNA and *rpoB* Genes by Use of RipSeq Software To Identify *Mycobacterium* Species. JCM, 2010

General algorithm for testing mycobacteria in the lab

Antibiotic susceptibility testing (AST)


- Broth microdilution testing
- No agar proportion (TB) or Etest methods have been approved by CLSI
- Read manually (subjective, labor intensive)

Antibiotic susceptibility testing (AST)

- Read manually (subjective, labor intensive)
- Technically challenging
 - Uneven growth
 - trailing endpoints
 - clumping, buttons vs. turbidity; Trimethoprim/sulfamethoxazole is read at 80% inhibition

AST Interpretation

- Minimum Inhibitory concentration = MIC value
- Interpretation
 - S, I, R = Susceptible, Intermediate, Resistant
 - Defined by CLSI M62, 2018 (updated M24S, 2023)

MAC

Antimicrobial	M	IC, µg/	mL
Agents	S	Ι	R
First Line			
Clarithromycin	≤8	16	≥32
Amikacin (IV)	<u>≤</u> 16	32	≥64
Amikacin (liposomal, inhaled)	≤64	<u></u> 3	≥128
Second Line			
Moxifloxacin	≤ 1	2	≥4
Linezolid	≤ 8	16	≥32

Rapid growingly mycobacteria

Antimicrobial		MIC, µg/m	L
Agent	S	Ι	R
Amikacin (IV)	≤16	32	≥64
Cefoxitin	≤ <u>16</u>	32-64	≥128
Ciprofloxacin	≤ 1	2	≥4
Clarithromycin	≤2	4	≥8
Doxycycline	<1	2-4	≥8

CLSI Breakpoints for NTM

• Amikacin has different formulations and breakpoints for MAC

Antimicrobial		MIC (µg/mL)	
	Susceptibl	Intermediat	Resistant
	е	е	
Amikacin	≤16	32	≥64
Cefoxitin	16	32-64	≥128
Clarithromycin	≤4	8	≥16
Ciprofloxacin	≤1	2	≥4
Doxycycline	≤1	2-4	≥8
Imipenem	≤4	8-16	≥32
Linezolid	≤8	16	≥32
Minocycline	≤1	2-4	≥8
Meropenem	≤4	8-16	≥32
Moxifloxacin	≤1	2	≥4
Linezolid	≤8	16	≥32
Tigecycline	Nor	ne, report MIC	only
Tobramycin	≤2	4	≥8
Trimethoprim/	≤2/38	-	≥4/76
sulfamethoxazole			

Rapid growers

Antimicrobial		MIC (µg/mL)	
	Susceptibl	Intermediat	Resistant
4	е	е	
Amikacin (Intravenou s)	≤16	32	≥64
Amikacin (Inhaled,	≤16	32	≥128
liposomal)			
Clarithromycin	≤8	16	≥32
Ciprofloxacin	≤1	2	≥4
Doxycycline	≤1	2-4	≥8
Linezolid	≤8	16	≥32
Minocycline	≤1	2-4	≥8
Moxifloxacin	≤1	2	≥4
Rifabutin	≤2	-	≥4
Rifampin	≤1	-	≥2
Trimethoprim/	≤2/38	-	≥4/76
sulfamethoxazole			

Slow growers (MAC)

Khare, Elliot. Culture, Identification and Antimicrobial Susceptibility Testing of Nontuberculous Mycobacteria. Clinics in Chest National Jewish Medicine, In preparation, 2023

CLSI Breakpoints for NTM

• Clarithromycin is the class drug for macrolides

Antimicrobial		MIC (µg/mL)	
	Susceptibl	Intermediat	Resistant
	е	е	
Amikacin	≤16	32	≥64
Cefoxitin -	16	32-64	≥128
Clarithromycin	≤4	8	≥16
Ciprofloxacin	≤1	2	≥4
Doxycycline	≤1	2-4	≥8
Imipenem	≤4	8-16	≥32
Linezolid	≤8	16	≥32
Minocycline	≤1	2-4	≥8
Meropenem	≤4	8-16	≥32
Moxifloxacin	≤1	2	≥4
Linezolid	≤8	16	≥32
Tigecycline	Nor	ne, report MIC	only
Tobramycin	≤2	4	≥8
Trimethoprim/	≤2/38	-	≥4/76
sulfamethoxazole			

Rapid growers

Slow growers

Antimicrobial		MIC (µg/mL)	
	Susceptibl	Intermediat	Resistant
	е	е	
Amikacin (Intravenous)	≤16	32	≥64
Amikacin (Inhaled,	≤16	32	≥128
liposomal) 🗕 🗕			
Clarithromycin	≤8	16	≥32
Ciprofloxacin	≤1	2	≥4
Doxycycline	≤1	2-4	≥8
Linezolid	≤8	16	≥32
Minocycline	≤1	2-4	≥8
Moxifloxacin	≤1	2	≥4
Rifabutin	≤2	-	≥4
Rifampin	≤1	-	≥2
Trimethoprim/	≤2/38	-	≥4/76
sulfamethoxazole			

Khare, Elliot. Culture, Identification and Antimicrobial Susceptibility Testing of Nontuberculous Mycobacteria. Clinics in Chest National Jewish Medicine, In preparation, 2023

Turnaround time

- Slow growers:
 - read at 7-14 days
 - Fastidious species at 3-4 weeks
 - *M. genavense*: Requires acid pH and mycobactin J supplementation; At least 6 weeks of incubation; long incubation time may cause antimicrobial degradation
- Rapid growers:
 - Most drugs read at 3-5 days
 - Clarithromycin: read at 14 days (because of inducible resistance)
- Other factors
 - Insufficient growth? Needs subculture

Mixed culture? Needs re-isolation

-

Molecular AST for NTM

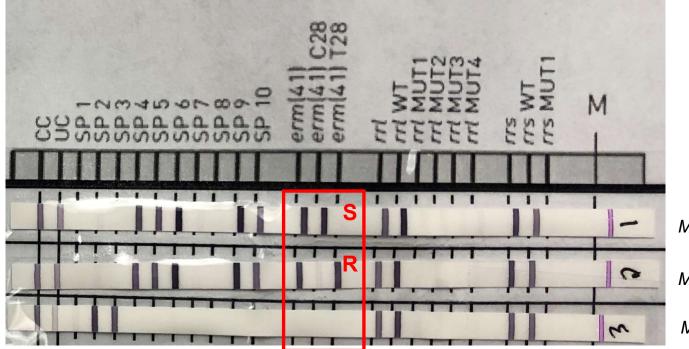
erms: functional erythromycin ribosomal methylase causes inducible macrolide resistance

Group	Organism	Gene	% resistant
MTBC	M. tuberculosis, M. africanum, M. microti, M. bovis	<i>erm</i> (37)	100%
M. abscessus	M. abscessus subsp. abscessus	erm(41); A point mutation (T28C) can inactivate the	70%
	<i>M. abscessus</i> subsp. <i>bolletii</i>	methylase and prevent inducible resistance	100%
	M. abscessus subsp. massiliense	Deletions in erm(41) result in a truncated, nonfunctional erm	0%
M. fortuitum	M. fortuitum	<i>erm</i> (39)	84%
complex	M. peregrinum		31%
	M. porcinum		90%
	M. septicum		86%
	M. senegalense	Nonfunctional <i>erm</i> (39)?	0%
Other RGM	M. smegmatis, M. goodii	<i>erm</i> (38)	?
	M. chelonae, M. iranicum? M. obuense?	<i>erm</i> (55) ^p (plasmid)	Rare
	M. chelonae	<i>erm</i> (55) ^C (chromosomal), <i>erm</i> (55) [⊤] (transposon)	Rare
	M. mageritense, M. wolinskyi	<i>erm</i> (40)	

Hunkins, Calado, Eddy, Daley, Khare. In vitro Susceptibility Patterns for Rapidly Growing Nontuberculous Mycobacteria in the United States, DMID, 2022, Kim et al. Species Distribution and Macrolide Susceptibility of Mycobacterium fortuitum Complex Clinical Isolates, AAC, 2019, Nash et al. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum, JAC, 2004, Toft Madson et al. Methyltransferase Erm(37) Slips on rRNA to Confer Atypical Resistance in Mycobacterium tuberculosis, JBC 2005

Elliott et al. Emergence of Inducible Macrolide Resistance in Mycobacterium chelonae Due to Broad-Host-Range Plasmid and Chromosomal Variants of the Novel 23S rRNA Methylase Gene, erm(55), JCM 2023 Madsen et al. Mycobacterium smegmatis Erm(38) Is a Reluctant Dimethyltransferase AAC, 2005

PNational Jewish Health


Brown-Elliott et al. Utility of Sequencing the erm(41) Gene in Isolates of Mycobacterium abscessus subsp. abscessus with Low and Intermediate Clarithromycin MICs, JCM 2015

Molecular Methods of AST

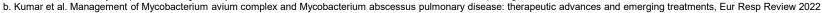
- Pros:
 - Faster! (hours-days instead of 6-8 weeks of culture based AST)
 - Some well characterized mutations that correlate well with phenotypic AST
 - *rrl*: Mutations in the 23S rRNA (A2058G or A2059G) peptidyl transferase represents acquired (constitutive) macrolide resistance
 - rrs: specific mutations in the 16S ribosomal RNA represent constitutive aminoglycoside resistance

Common NTM	Present or not
<i>M. abscessus</i> subsp. <i>abscessus</i>	rrl, rrs
<i>M. abscessus</i> subsp. <i>bolletii</i>	rrl, rrs
<i>M. abscessus</i> subsp. <i>massiliense</i>	rrl, rrs
M. avium sensu stricto	rrl, rrs
<i>M. intracellulare</i> subsp. <i>chimaera</i>	rrl, rrs
<i>M. avium</i> complex	rrl, rrs
M. chelonae	rrl, rrs
M. kansasii	N/A
M. fortuitum	N/A

Line probe assays

M. abscessus subsp. *abscessus*

M. abscessus subsp. *abscessus*


M. intracellulare subsp. chimaera

New drugs with potential activity against mycobacteria

	Drug class	RGM	SGM	МТВС
Omadacycline	Tetracycline	Potential	Modest	
Eravacycline	Tetracycline	Potential	Potential	
Fobrepodacin	Amino-benzimidazole	Modest	Potential	
Epetraborole	Benzoxaborole	Potential ^a	Potential	
Bedaquiline	Diarylquinolone	Potential	Potential	Yes
Pretomanid	Nitroimidazole	No	No, except <i>M.</i> <i>kansasii</i>	Yes
Delaminid	Nitroimidazole	No	Potential	
Tedizolid	Oxazolidinone	Potential	Potential	
Imipenem+Ceftaroline Ceftazidime+imipenem Ceftazidime+ceftaroline	Dual beta-lactam therapy	Potential ^b	Unknown	

a. Sullivan et al. Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline, PLOS pathog 2021

In Summary...

- Updates in taxonomy/nomenclature
- Review of smear and culture
- Evaluated identification techniques
- Antimicrobial susceptibility testing
 - Phenotypic testing
 - Genotypic testing
- Guidelines

Thank you!

