Host Risk Factors for NTM Infections (and a little bit on immunopathogenesis)

Ed Chan, M.D. ChanE@NJHealth.org

NTM Lecture Series April 25, 2024, 10:15-11:00 AM

No conflict of interests

To combat mycobacteria, *"follow the middle path."*

Buddha

Outline & goals

- Underlying host risk factor dictates type of NTM disease
 - Disseminated / extrapulmonary visceral NTM disease
 - Skin, soft tissue, and traumatic orthopedic infections
 - ➢ Isolated NTM lung disease
 - >NTM lung disease without obvious risk factors
- Immunopathogenesis based on the Goldilock's concept
 - ➤ Using <u>immune checkpoint inhibitors</u> as an example
 - Expanding on the concept to other entities

The type of NTM disease reflects the underlying host risk factor

Skin, soft tissue, and/or traumatic orthopedic NTM infection (most have normal immunity)

Isolated NTM lung disease (structural lung abnormality)

Extrapulmonary visceral or disseminated NTM infection (essentially all have underlying severe immunodeficiency)

What medical condition am I alluding to with this blood collection tube?

Dupont
isolatorIDS are
ed (MAC)
tion of
FNγ

Patients with advanced AIDS are susceptible to disseminated (MAC) because they have <u>depletion</u> of CD4⁺ cells that produce IFN γ

Acquired and inherited disorders that predisposes to <u>disseminated</u> mycobacterial infection

Risk factors for skin, soft tissue, and traumatic orthopedic NTM infections

• **Breach of skin** – accidental trauma, foot salons, medical procedures with contaminated water, instrument, or medications.

After cosmetic surgery

After liposuction

After bunionectomy

• Most cases occur in those with normal host immunity...but we contend that physical trauma itself may be immunocompromising.

Why did this healthy teenager get a localized NTM infection of the spine?

- A 16-year-old girl suffered multiple falls from competitive roller skating, resulting in abrasions, MSK pains, and recalcitrant backache.
- MRI revealed an enhancing signal in T9 with anterior paraspinal soft tissue mass from T8-T10.
- Biopsy of T9 revealed necrotizing granulomas and culture was +ve for *M. abscessus*.

T9 vertebra biopsy

Higher power of granuloma

Mike Iseman, MD

We hypothesized that the site of trauma is "fertile soil" for seeding of infection

"locus minoris resistentiae"

M. chimaera and open-chest heart surgery

- In 2013, *M. chimaera* infections were reported in patients who underwent open-chest heart surgery.
- Infections involved the implanted hardware, surgical wounds, and/or internal organs.
- M. chimaera was traced to contaminated heater-cooler units ("heart-lung machine") and the bioaerosols generated, which contaminated the surgical sites.

Scriven JE et al. Clin Microbiol Infect 2018

M. chimaera and open-chest heart surgery

AORTIC & AORTIC VALVE SURGERY are HIGHEST RISK Coronary artery
bypass graft surgery is lowest risk

- A 22-year-old man had undergone mechanical aortic valve replacement.
- He presented ~1.5 years later with drenching night sweats & chest pains.
- Aortic dissection with pseudoaneurysm with false lumen (red arrow).
- Underwent prosthetic aortic grafting with intraoperative tissues +ve for *M. chimaera*.

O'Neil CR et al. OFID 2018

Risk factors for NTM lung disease

55-year-old Asian woman from Hawaii with remote history of TB

John D. Mitchell, MD Extrapleural pneumonectomy Oct 2006

Q1: What are the underlying causes for BXSIS ± NTM-LD ?

A 66 -- year-old woman with CF

A 65 –year-old man with alpha-1-antitrypsin deficiency

Q2: What is the underlying cause for the BXSIS + NTM-LD?

She has primary ciliary dyskinesia resulting in situs ambiguous of her internal organs

Q3: What is the underlying cause for the emphysema, lung cysts, and *M. avium* complex-LD in a 63-year-old male veteran?

Not the same patient

Not the same patient

(von Recklinghausen's disease)

AAT has a panoply of effects that protects against NTM lung disease

What about those without obvious risk factors?

• A significant number have a life-long slender body habitus, scoliosis, & pectus excavatum.

A 41-year-old previously healthy woman life-long slender body habitus, severe scoliosis, and NTM lung disease

- Reich and Johnson described 29 patients (all women with no obvious risk factors) with NTM lung disease, localized mostly in the right middle lobe and lingula (<u>Chest</u> 1992).
 - They coined the eponym "Lady Windermere syndrome" because they posited that some women are more vulnerable to NTM-LD because of "voluntary cough suppression."
 - While they did not allude that these patients have slender body habitus or thoracic cage abnormalities, "Lady Windermere syndrome" has become synonymous with women with NTM-LD with this body phenotype.

If thin individuals are more susceptible (as has well documented with TB), why could that be?

- <u>Hypothesis</u>: due to a relative deficiency of leptin.
- Leptin is a satiety hormone produced by fat cells: the more fat one has → the more leptin is produced.
- Leptin also skews the adaptive immunity toward the host-protective $T_H 1$ (IFN γ -producing) phenotype.
- Thus, thin individuals \rightarrow less leptin \rightarrow less IFN γ -producing T_H1 cells.

• Leptin-deficient mice are more susceptible to *M. tuberculosis* and *M. abscessus*.

Wieland CW et al. <u>Int Immunol</u> 2005 Ordway D et al. <u>J Leuk Biol</u> 2008

Other hypotheses of why patients without obvious risk factors get NTM-LD

Szymanski EP et al. Am J Respir Crit Care Med 2015

Whole Exome Gene Sequencing of 11 NTM-LD patients with PEX/scoliosis

Patient number	Study No.	%body fat or BMI	PEX	Scoliosis	Key gene variant found
1	63682	21%	Yes	Yes	Δ fibrillin-1, Δ IFN γ R1
2	63690	21%	Yes	Yes	∆MST1R
3 (sister of 2)	63685	17.5 kg/m ²	Yes	Straight back	∆MST1R
4	63688	25%	Yes	Yes	
5	63683	21.5 kg/m ²	Yes	Yes	$\Delta TGF\beta$ -induced protein
6	63687	28%	Yes	Yes	
7	63684	25%	Yes	Yes	
8	63686	27%	Yes	Yes	
9	63692	25%	Yes	Yes	∆MST1R
10	63691	21 kg/m ²	Yes	Yes	∆MST1R
11	63689	23 kg/m ²	Yes	Yes	

Targeted Sanger sequencing of 29 pNTM patients without PEX or scoliosis do NOT have ∆MST1R

<u>*MST1R</u> = cell surface receptor with tyrosine kinase activity involved with ciliary function

Take home points

Skin, soft tissue, and/or traumatic orthopedic NTM infection

Isolated NTM lung disease

Decreasing immunity

Most have normal underlying immunity but trauma itself is immunosuppressive

Most have underlying structural lung abnormality (BXSIS or emphysema): e.g., CF, AAT deficiency, multigenic

Extrapulmonary visceral or disseminated NTM infection

Essentially all have underlying severe immunodeficiency & one should search for it

The intersection of: 1) host susceptibility, 2) exposure, &3) NTM virulence dictates whether NTM disease develops

Q4: Which of the following patients is likely to have a functional defect in IFN_γ signaling / function?

- a. A 60-year-old man with COPD and cavitary *M. avium* lung disease.
- b. A 60-year-old woman with isolated *M. avium* lung disease of the lingula, RML, and RUL.
- c. A 4-year-old girl with disseminated *M. avium*.
- d. A 25-year-old man with surgical wound foot infection after bunionectomy.

Q5: Which of the following are risk factors for isolated NTM lung disease? <u>More than one may be correct</u>.

- a. Pulmonary alveolar proteinosis
- b. Emphysema
- c. Auto-antibodies to $\text{IFN}\gamma$
- d. Idiopathic bronchiectasis

Immune checkpoint inhibitors (ICIs) have revolutionized treatment of many cancers

B) Immune checkpoint inhibitors activate T_H1 cells to kill cancer cells

Q6: Since ICIs (*e.g.*, anti-PD1 antibody) augment IFN $\gamma^{+}T_{H}1$ cell activity, would you predict mice *knocked out* for PD-1 (which would increase IFN $\gamma^{+}T_{H}1$ cell activity) be more protective against *MTB*?

A6: Yes, I would also predict that mice *knocked out* for PD-1 (which would increase IFN $\gamma^{+}T_{H}1$ cell activity) be more protective.

But in reality, PD-1 KO mice were actually **more susceptible** to TB, with increased *MTB* burden and reduced survival.

