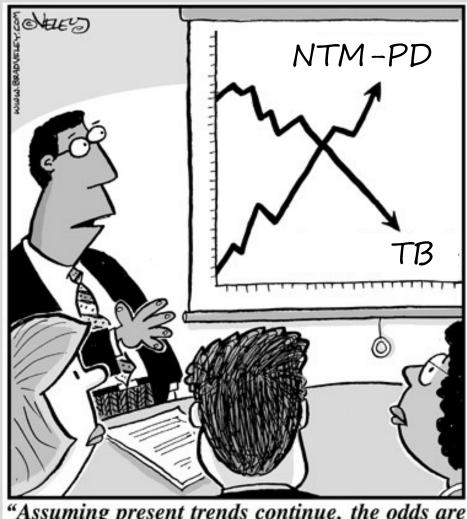
Current Trends in Nontuberculous Mycobacterial Lung Disease

National Jewish Health NTM Lecture Series for Providers – April, 2024

Ted Marras, MD, MSc UofT / Toronto Western Hospital / UHN

Disclosures


- Research
 - Insmed site investigator
 - Ontario Thoracic Society Lung Foundation
 - OHSU/PCORI
- Consultant
 - Mannkind, Partner Therapeutics, Pfizer
- CME
 - OHSU, NYU Langone, Lucid Group

Objectives

To discuss:

- Epidemiology
- **Risk factors** (population level)
- Transmission
- Financial costs
- Outcomes and survival

Relevant to NTM-PD

Epidemiology

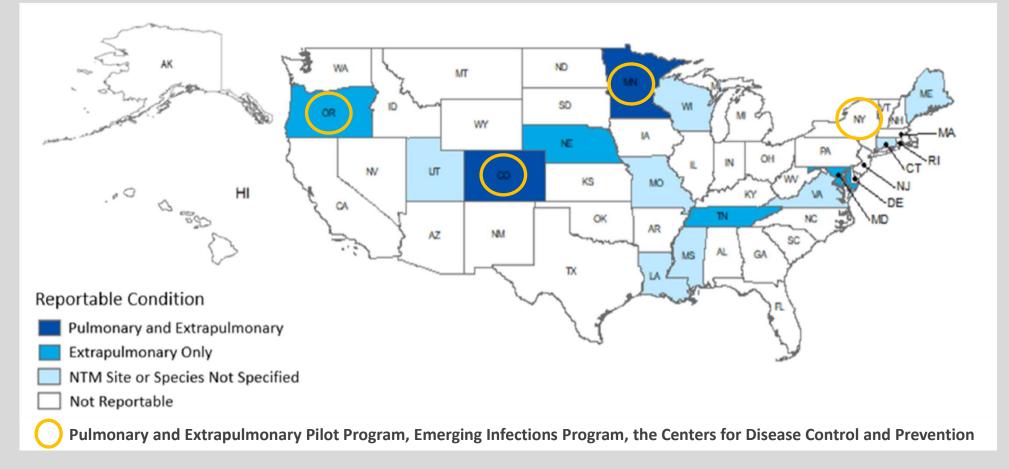
- Challenges
- Recent data

"Assuming present trends continue, the odds are quite good that we'll

...continue to see more and more NTM-PD

If a person develops NTM-PD and we don't report it...

...they still have the disease!



NTM reportability

Diagnosis NTM-PD						
	With \geq 2 sputa \rightarrow 2 positive cultures, or					
Microbiology	With 1 BAL/wash $ ightarrow$ 1 positive bronchial wash, or					
	With biopsy $ ightarrow$ + biopsy culture / 1+ culture & biopsy evidence of disease					
Clinical	Pulmonary / systemic symptoms not otherwise explained					
Radiology	CXR – nodules / cavities					
	CT – bronchiectasis with nodules / cavitation					

NTM Reportable in Only 14 States

Mercaldo et al. Tuberculosis 2023: 139

Diagnosis NTM-PD

Radiology	CT – bronchiectasis with nodules / cavitation
	CXR – nodules / cavities
Clinical	Pulmonary / systemic symptoms not otherwise explained
	With biopsy $ ightarrow$ + biopsy culture / 1+ culture & biopsy evidence of disease
Microbiology	With 1 BAL/wash \rightarrow 1 positive bronchial wash, or
	With \geq 2 sputa \rightarrow 2 positive cultures, or

Disease Likely if:

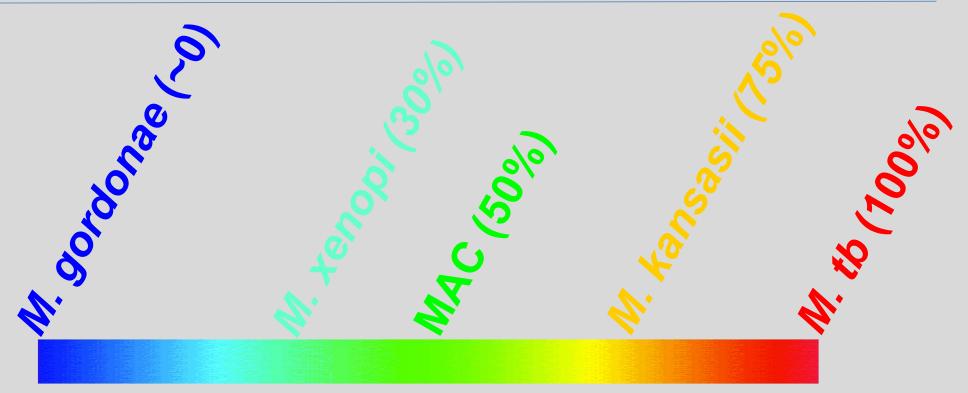
~50% with MAC isolate ~70-90%* with <u>></u>2 sputum +

Association between isolation and disease permits inferences on disease rates and trends

* Winthrop, Am J Respir Crit Care MeD 2010 Andrejak, Am J Respir Crit Care Med 2010 Marras, Lung 2010Winthrop, Pharmacoepidemiol Drug Saf 2011Prevots, Am J Respir Care Crit Care Med 2010

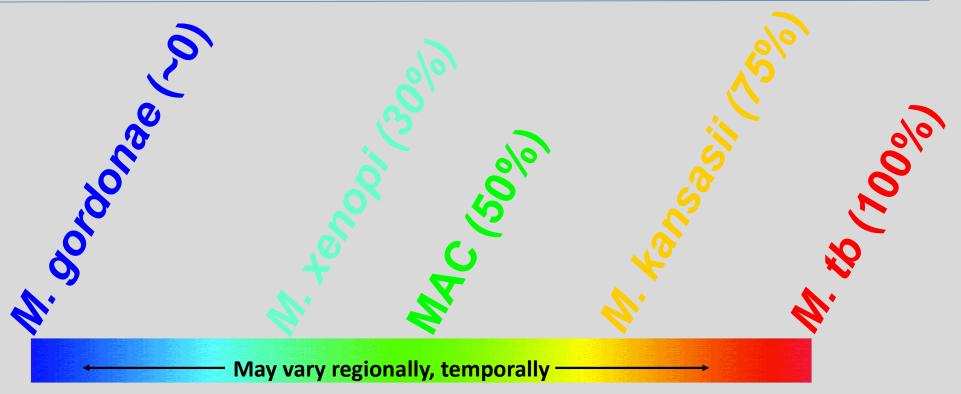
Diagnosis NTM-PD

	With \geq 2 sputa \rightarrow 2 positive cultures, or
Microbiology	With 1 BAL/wash \rightarrow 1 positive bronchial wash, or
	With biopsy $ ightarrow$ + biopsy culture / 1+ culture & biopsy evidence of disease
Clinical	Pulmonary / systemic symptoms not otherwise explained
Radiology	CXR – nodules / cavities
	CT – bronchiectasis with nodules / cavitation

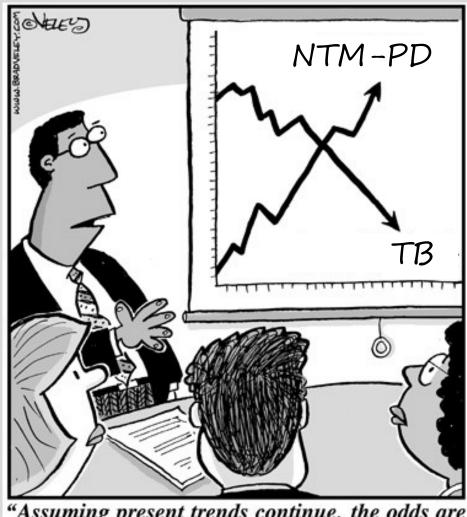

Oregon (Winthrop et al. Annals ATS 2017) Queensland, Australia (Thomson et al. Annals ATS 2017) Detailed reporting Ongoing lab-based

Diagnosis NTM-PD

	With \geq 2 sputa \rightarrow 2 positive cultures, or				
Microbiology	With 1 BAL/wash \rightarrow 1 positive bronchial wash, or				
	With biopsy \rightarrow + biopsy culture / 1+ culture & biopsy evidence of disease				
Clinical	Pulmonary / systemic symptoms not otherwise explained				
	CXR – nodules / cavities				
Radiology	CT – bronchiectasis with nodules / cavitation				
Underestimat	e Undetected cases				
	Lack of ongoing sputum sampling				
Overestimate	Unknown (and variable) proportion meeting micro criteria				
	lack disease				


NTM species

- pathogenic potential


NTM species

- pathogenic potential

Applying microbiological criteria by species (and at the population level)

• Daley et al. Eur Respir J 2020, Lange et al. Lancet Infect Dis 2022

Epidemiology

- Challenges
- Recent data 4

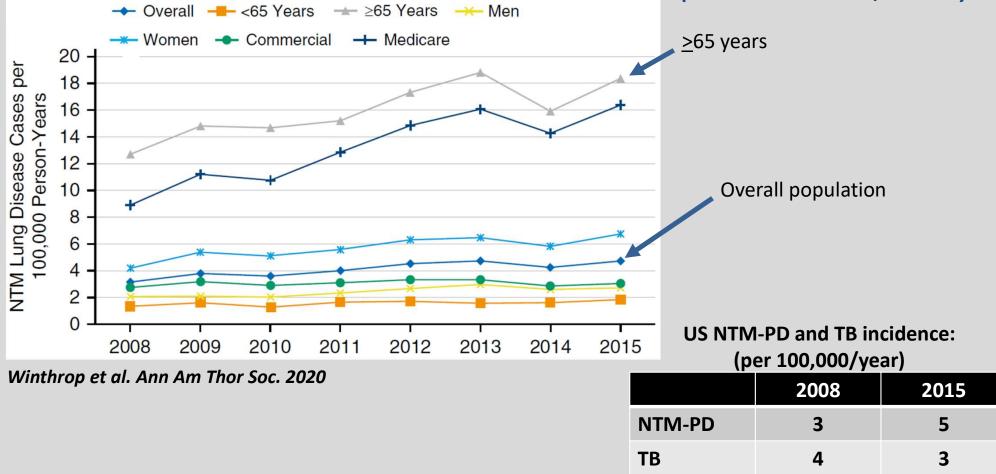
"Assuming present trends continue, the odds are quite good that we'll

...continue to see more and more NTM-PD

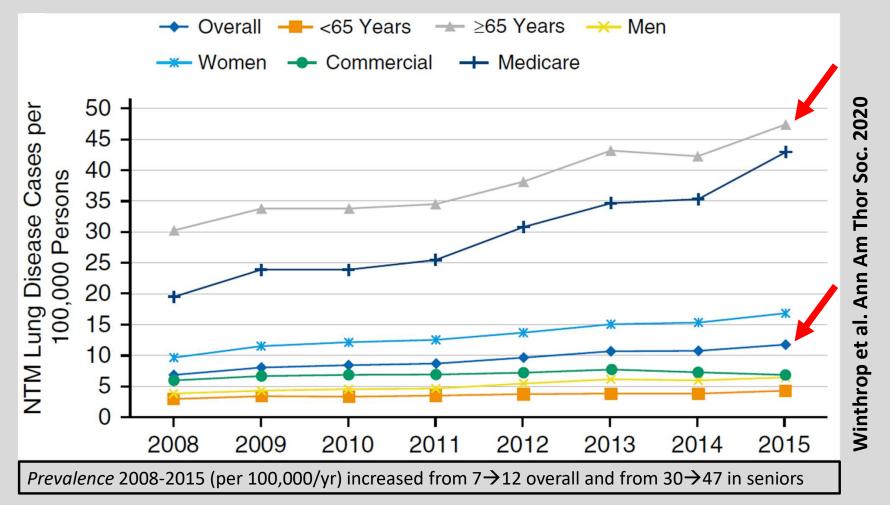
Systematic Review: 82% of studies reported increased isolation, 66.7% increased disease

NTM infection per 100,000 persons/year (relative)

NTM disease per 100,000 persons/year (relative)


First author, country	Slope	SE	Annual rate of change	Exp()	95%CI	First author, country	Slope	SE	Annual rate of change	Exp()	95%CI
Sheu et al, US ^a Smith et al, US Hernández-Garduño et al, Canada Santin et al, Spain Russell et al, Scotland/UK Dean et al, US Brode et al, Canada Thomson et al, Australia ^a Donohue et al, US Shah et al, UK ^a Dakić et al, Serbia Lai et al, Taiwan Chien et al, Taiwan Park et al, South Korea ^a Chen et al, Taiwan	-0.24 -0.05 -0.01 0.03 0.04 0.04 0.05 0.06 0.08 0.08 0.08 0.08 0.10 0.11 0.14 0.15	0.03 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02		0.95 0.99 1.03 1.04 1.04 1.04 1.06 1.07 1.09 1.09 1.11 1.12 1.15	$\begin{matrix} [0.75; 0.82] \\ [0.89; 1.02] \\ [0.96; 1.01] \\ [1.02; 1.05] \\ [1.00; 1.07] \\ [1.04; 1.08] \\ [1.04; 1.08] \\ [1.04; 1.09] \\ [1.05; 1.12] \\ [1.05; 1.13] \\ [0.99; 1.20] \\ [1.01; 1.20] \\ [1.07; 1.17] \\ [1.11; 1.20] \\ [0.95; 1.41] \end{matrix}$	Guideline criteria = No Santin et al, Spain Hernández-Garduño et al, Canada Henkle et al, US Brode et al, Canada Dakić et al, Serbia Pooled estimate Heterogeneity: I^2 = 96%, P < 0.001 Guideline criteria = Yes Pedrero et al, Spain ^a Chien et al, Taiwan Ko et al, South Korea ^a Gerogianni et al, Greece Chen et al, Taiwan Park et al, South Korea ^a Lai et al, Taiwan Ding et al, Taiwan Pooled estimate Heterogeneity: I^2 = 97%, P < 0.001	0.02 0.06 0.19 -0.12 0.10 0.11 0.13 0.14 0.16	0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.27 0.14 0.02 0.02	*	0.99 1.02 1.06 1.21 1.04 0.89 1.10 1.12 1.13 1.15 1.18 1.19 1.23	[0.96; 1.00] [0.96; 1.01] [0.99; 1.06] [1.04; 1.07] [1.16; 1.27] [1.03; 1.05] [0.86; 0.91] [1.06; 1.14] [1.07; 1.17] [0.67; 1.91] [0.86; 1.52] [1.13; 1.23] [1.15; 1.24] [1.06; 1.42] [1.04; 1.07]
Pooled estimate Heterogeneity: / ² = 94%, P < 0.001			0.8 1 1.25	1.04	[1.03; 1.05]	Pooled estimate Heterogeneity: $I^2 = 96\%$, P < 0.001 Test for subgroup differences: P = 0.0)50		0.75 1 1.5	1.04	[1.03; 1.05]

- Restricted to studies with culture-based data for at least 3 years and at least 200 samples
- 47 publications from 18 countries
- Increase of 4% per year for isolation and 4% for disease

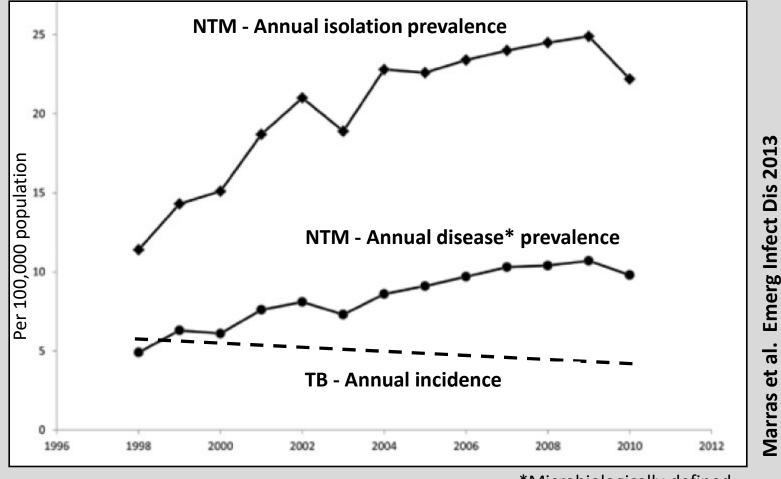

Dahl et al. Int J Infect Dis 2022

Increasing NTM-PD / Decreasing TB

- Incidence (claims data, USA)

Ontario, Canada

- Population ~15.6 M
- Publicly funded health care (>95% coverage), administered via Ministry of Health
 - Physician fees, inpatient costs, outpatient diagnostic/lab tests (full population)
 - Formulary approved outpatient medications (>65 years, social assistance)


Ontario, Canada

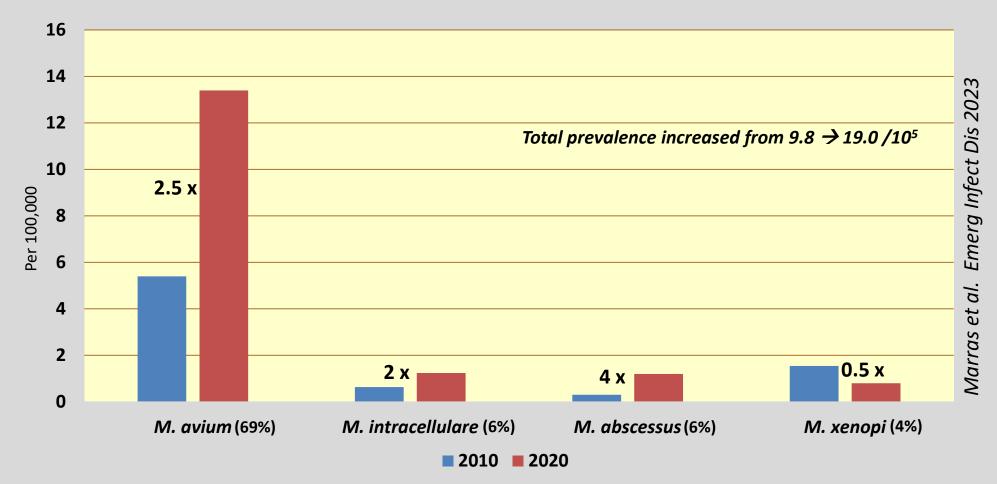
- Population ~15.6 M
- Publicly funded health care (>95% coverage), administered via Ministry of Health
 - Physician fees, inpatient costs, outpatient diagnostic/lab tests (full population)
 - Formulary approved outpatient medications (>65 years, social assistance)

Public He Central (Te	ealth ON Labs pronto)	
>95% NTM	Public Health Ontario PARTNERS FOR HEALTH Santé publique Ontario PARTNERS FOR HEALTH	

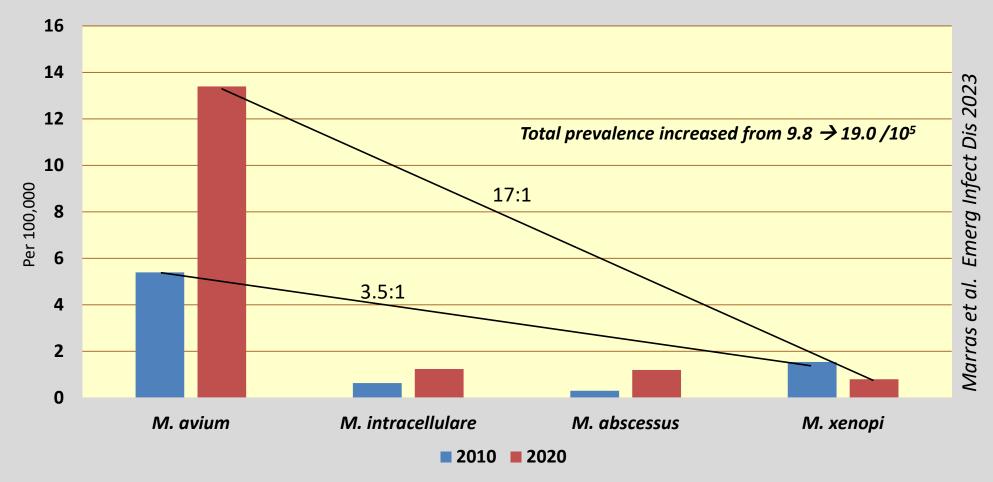
P.

Pulmonary NTM isolation annual prevalence, Ontario, Canada 1998-2010

*Microbiologically defined

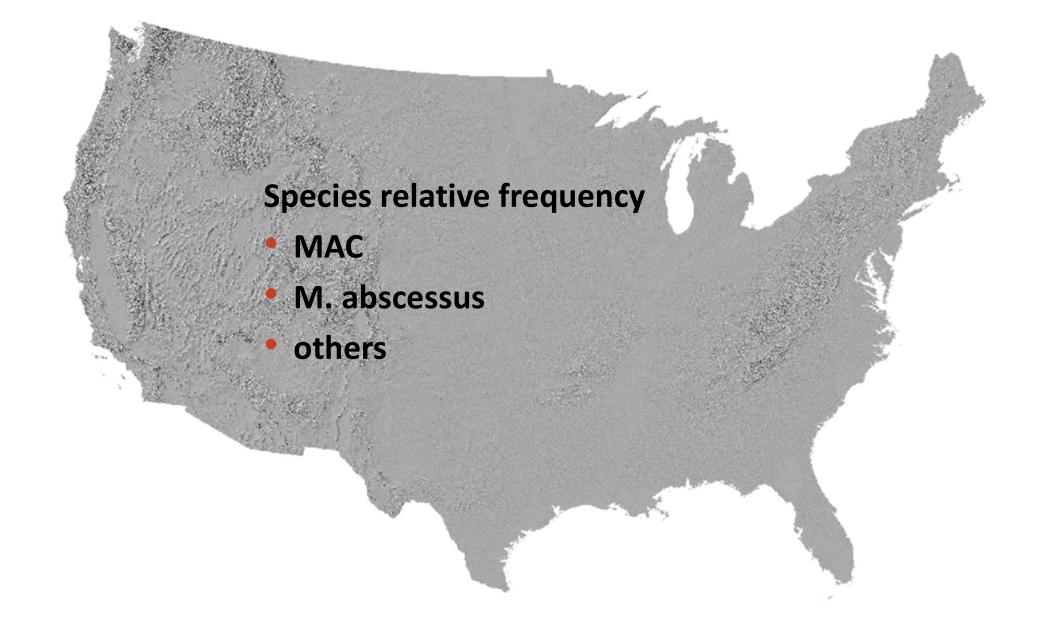

NTM-PD in Ontario, Canada

Population-based, microbiological definitions


Annual Metric (per 100,000)	1998	2010	2020		
Isolation	11	22	32		
Disease	5	10	19		

- Marras et al. Emerg Infect Dis 2013
- Marras et al. Emerg Infect Dis 2023

NTM-PD, Ontario, Canada: 2010 vs 2020


NTM-PD, Ontario, Canada: 2010 vs 2020

MAC drove recent increases in NTM-PD

Population-based studies

Location	Time period	First author	Journal, Year
Barcelona (MAC)	1994-2014	Santin	Emerg Infect Dis, 2018
Queensland (MAC)	1999-2005	Thomson	Emerg Infect Dis, 2010
UK (MAC)	2007-2012	Shah	BMC Infect Dis, 2016
Netherlands (M. avium)	2000-2006	van Ingen	Int J Tuberc Lung Dis, 2010
Belgium (M. avium)	2007-2016	Soetaert	Euro Surveill, 2019
Hawaii (MAC, one HMO)	2005-2013	Adjemian	Emerg Infect Dis, 2017
Israel (MAC)	2010-2020	Enghelberg	ATS conference 2022

- recent studies
- "disease" unless otherwise indicated

1. MAC 2. M. abscessus (*M. kansasii* 1st Sao Paulo & Uruguay)

Prevots et al. Clin Chest Med 2023

- recent studies
 - "disease" unless otherwise indicated

1. **MAC**

(M. kansasii: ESP, POL) (M. xenopi: Croatia)

2. Variable

- M. xenopi: BEL, FRA, GRC, SRB
- M. kansasii: CZE, FRA
- M. abscessus: GRC, SRB
- M. malmoense: NLD

1. MAC 2. M. abscessus (*M. kansasii* 1st Sao Paulo & Uruguay)

Prevots et al. Clin Chest Med 2023

- recent studies
- "disease" unless otherwise indicated

1. **MAC**

(M. kansasii: ESP, POL) (M. xenopi: Croatia)

2. Variable

- M. xenopi: BEL, FRA, GRC, SRB
- M. kansasii: CZE, FRA
- M. abscessus: GRC, SRB
- M. malmoense: NLD

Isolation (few data on disease) 1. MAC (usually *M. intracellulare*) (*M. simiae*: ETH) (*M. fortuitum*: NGA) (*M. kansasii*: TUN) 2. Variable

- M. abscessus: ETH, GHA, TZA
- M. intracellulare: NGA, TZA
- M. fortuitum: KEN, TUN
- M. simiae: GHA
- M. malmoense: BWA

Prevots et al. Clin Chest Med 2023

1. MAC 2. M. abscessus (*M. kansasii* 1st Sao Paulo & Uruguay)

- recent studies
- "disease" unless otherwise indicated

1. **MAC**

(M. kansasii: ESP, POL) (M. xenopi: Croatia)

- 2. Variable
- M. xenopi: BEL, FRA, GRC, SRB
- M. kansasii: CZE, FRA
- M. abscessus: GRC, SRB
- M. malmoense: NLD

Isolation (few data on disease) 1. MAC (usually *M. intracellulare*) (*M. simiae*: ETH) (*M. fortuitum*: NGA) (*M. kansasii*: TUN) 2. Variable

- M. abscessus: ETH, GHA, TZA
- M. intracellulare: NGA, TZA
- *M. fortuitum:* KEN, TUN
- M. simiae: GHA
- M. malmoense: BWA

1. MAC

- M. intracellulare: CHN (4), JPN (1)
- *M. avium*: JPN (2)
- MAC: KOR (2), TWN (2), JPN (1)
- 2. M. abscessus
- Multiple studies CHN, JPN, KOR, TWN

Prevots et al. Clin Chest Med 2023

1. MAC 2. M. abscessus (*M. kansasii* 1st Sao Paulo & Uruguay)

- recent studies
- "disease" unless otherwise indicated

1. **MAC**

(M. kansasii: ESP, POL) (M. xenopi: Croatia)

- 2. Variable
- M. xenopi: BEL, FRA, GRC, SRB
- M. kansasii: CZE, FRA
- M. abscessus: GRC, SRB
- M. malmoense: NLD

Isolation (few data on disease) 1. MAC (usually *M. intracellulare*) (*M. simiae*: ETH) (*M. fortuitum*: NGA) (*M. kansasii*: TUN) 2. Variable

- *M. abscessus*: ETH, GHA, TZA
- M. intracellulare: NGA, TZA
- *M. fortuitum:* KEN, TUN
- M. simiae: GHA
- M. malmoense: BWA

1. MAC

- M. intracellulare: CHN (4), JPN (1)
- *M. avium*: JPN (2)
- MAC: KOR (2), TWN (2), JPN (1)
- 2. M. abscessus
- Multiple studies CHN, JPN, KOR, TWN

Isolation (few data on disease)

- 1. Variable
- M. abscessus: IND (2), SGP (2)
- MAC: IND (2), PAK (1)
- M. chelonae: IND (1)
- 2. Variable
- M. fortuitum: IND (4), SGP (2)
- M. abscessus: PAK (1)
- M. chelonae: IND (1)

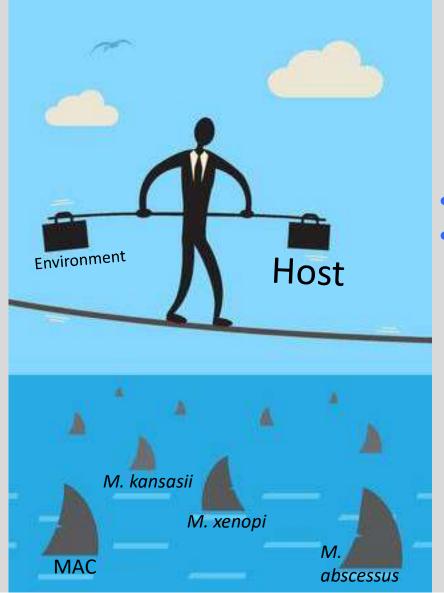
Prevots et al. Clin Chest Med 2023

1. MAC 2. M. abscessus (*M. kansasii* 1st Sao Paulo & Uruguay)

- recent studies
- "disease" unless otherwise indicated

- Isolation (mostly)
- 1. Variable
- M. abscessus: IRN (1)
- MAC: SAU (1)
- M. fortuitum: TUR (1)
- 2. Variable
- M. abscessus: SAU (1), TUR (1)
- M. simiae: IRN (1)

Prevots et al. Clin Chest Med 2023


- recent studies
- "disease" unless otherwise indicated

- Isolation (mostly)
- 1. Variable
- M. abscessus: IRN (1)
- MAC: SAU (1)
- M. fortuitum: TUR (1)
- 2. Variable
- M. abscessus: SAU (1), TUR (1)
- M. simiae: IRN (1)

Isolation

- 1. Variable
- MAC: AUS (2), PNG (1)
- M. abscessus: FPN (1)
- 2. Variable
- M. abscessus: AUS (1)
- M. fortuitum: PNG (1)
- M. porcinum: FPN (1)

Prevots et al. Clin Chest Med 2023

- NTM very widespread \rightarrow exposure extensive
- Disease uncommon (~40/100,000)

Older Age

- Mean age at diagnosis
 - North America 68 years
 - Europe 60 years
 - East Asia 61 years

- Prevots et al. Clin Chest Med 2023

Older Age

- Mean age at diagnosis
 - North America 68 years
 - Europe 60 years
 - East Asia 61 years

Female Sex

- All NTM-PD
 - North America 60%
 - Europe 46%
 - East Asia 61%

- Prevots et al. Clin Chest Med 2023

- Prevots et al. Clin Chest Med 2023

Older Age

•	Mean age at diagno		- Prevots et al. Clin Chest Med	
	North America	68 years		
	• Europe	60 years		
	East Asia	61 years		
Fe	emale Sex			
•	All NTM-PD			- Prevots et al. Clin Chest Med
	North America	60%		
	• Europe	46%		
	East Asia	61%		
•	Nodular Bronchiect	tasis		
	Samsung Medica	l Center (1997-2013)	68%	- Jhun et al. Eur Respir J 2020
	• TWH Clinic (2003	-2023)	77%	

in Chest Med 2023

in Chest Med 2023

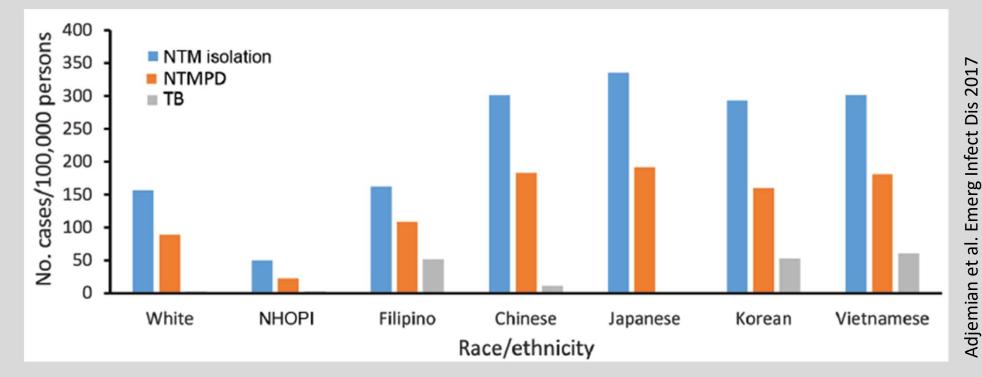
Pre-existing structural lung disease

- Emphysema / COPD
 - Strong association
 - NTM w COPD (recent US studies) 44%
- Bronchiectasis
 - Recent US studies 35% (underestimate?) Prevots et al. Clin Chest Med 2023
- Fibrosis
 - 2% IPF patients (Seoul)
 - Recent US studies limited 4-10%

- Park J Korean Med Sci 2012
- Prevots et al. Clin Chest Med 2023

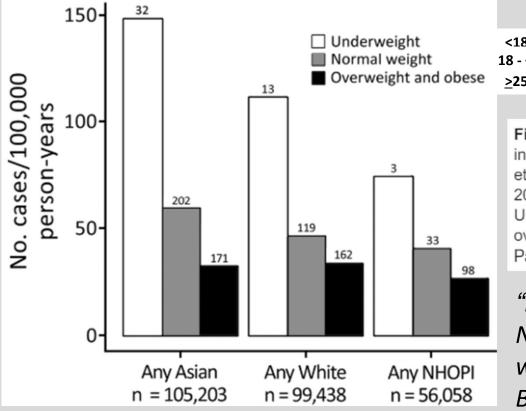
- Andrejak Thorax 2019, Marras ERJ 2016
- Prevots et al. Clin Chest Med 2023

Covert impairment of muco-ciliary / pulmonary defense


- CFTR mutations
 - NTM clinic: 20% CF, 50% mutation(s) Ziedalski Chest 2006
- Ciliary impairment
- Immune dysregulation (autoimmunity, medications, etc.)

- Szymanski, Am J Respir Crit Care Med 2015

• Medications / immune suppression (anti TNFs, etc.)


- Brode et al. Thorax 2015

• **Hawaii** – HMO, 2005-2013, self-reported race, NTM-PD defined microbiologically

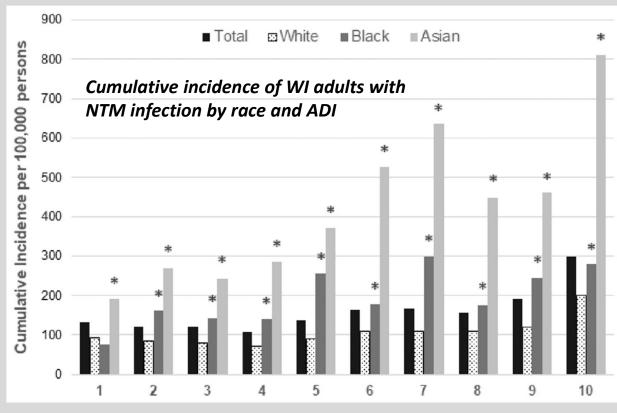
"Substantial differences exist in the epidemiology of NTMPD by race/ethnicity, suggesting behavioral and biologic factors that affect disease susceptibility."

• Hawaii – HMO, 2005-2019, self-reported race, NTM-PD defined microbiologically

<18.5 kg/m² 18 - <25 kg/m² <u>></u>25 kg/m²

Figure. Nontuberculous mycobacterial pulmonary infection incidence among Kaiser Permanente Hawaii beneficiaries, by ethnicity and body mass index category, Hawaii, USA, 2005–2019. Numbers above bars indicate case count by BMI category. Underweight, <18.5 kg/m²; normal weight, 18.5 to <25 kg/m²; overweight/obese, ≥25 kg/m². NHOPI, Native Hawaiian and Other Pacific Islander.

"Low BMI may increase susceptibility to NTM-PI, and risk may be higher for persons who self-identify as Asian, independent of BMI."


Blakney et al. Emerg Infect Dis 2022

• **Wisconsin** – state-wide, 2011-2018, NTM isolation (>1 positive)

	1	Total		piratory
	Number (%) of Persons	Cumulative Incidence per 100,000 (95% CI)	Number (%) of Persons	Cumulative Incidence per 100,000 (95% Cl)
Total Gender	6,811 (100)	154 (150–157)	6,088 (100)	137 (134–141)
Female Male	3,545 (52.1) 3,238 (47.5)	157 (152–163) 148 (143–154)	3,183 (52.3) 2,879 (47.3)	141 (136–146) 132 (127–137)
Not reported Age, yr, median (IQR)	28 (0.4) 66 (54–76)	_	26 (0.4) 67 (56–76)	_
Race	00 (34-70)	_	07 (30-70)	_
Unascertained	2,058 (30.2)	_	1,774 (29.1)	-
Ascertained White	4,753 (69.8) 3,833 (80.6)	96.5 (93.4–99.5)	4,314 (70.9) 3,466 (80.3)	
Black	563 (11.8)	224 (205-242)*	507 (11.8)	202 (184–219)*
Asian	247 (5.2)	244 (214–275)*	241 (5.6)	238 (208–268)*

Vonasek et al. Ann Am Thor Soc 2023

• Wisconsin – state-wide, 2011-2018, NTM isolation (>1 positive)

Area Deprivation Index ("inverse" of socioeconomic status) NTM isolation more frequent in non-White racial groups and in individuals with social disadvantage...

NTM disease may be more frequent in these groups

Could access to care could explain prior results?

Limitations

- Isolation only
- Sampling

Vonasek et al. Ann Am Thor Soc 2023

-Environment & Exposures

Association between MAC-PD and Mycobacteria in Home Water and Soil: A Case-Control Study

- Test associations between MAC-PD and NTM colonization of potential home point-ofuse exposure sources
- WA/OR residents with MAC-PD (cases, n=56) and population controls (n=51) matched by age, sex, geography
- Sampled water from bathroom & kitchen faucets, shower aerosols, indoor & outdoor soil
- NTM isolation from case vs control homes compared using conditional logistic regression adjusted for potential confounders

Tzou et al. Ann Am Thor Soc 2019

-Environment & Exposures

Association between MAC-PD and Mycobacteria in Home Water and Soil: A Case-Control Study

Table 1. Association of residential nontuberculous mycobacteria and M. avium complex pulmonary disease by point-of-use source

Household site	N (Positive)*		Unadjusted Analysis Age		Age-adjusted	Age-adjusted Analysis [†]		Fully Adjusted Analysis [‡]	
	Cases	Control Subjects	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI	
Bathroom faucet Kitchen faucet Shower aerosols Indoor soil Outdoor soil	40 (23) 40 (23) 39 (18) 30 (17) 39 (10)	48 (20) 48 (22) 46 (10) 38 (13) 46 (9)	1.7 1.6 3.2 2.0 1.2	0.8–4.0 0.7–4.0 1.1–8.9 0.7–5.4 0.4–3.4	1.8 1.4 3.8 1.6 1.1	0.7–4.3 <u>0.6–3.5</u> <u>1.2–11.7</u> 0.6–4.6 0.4–3.2	2.1 1.6 4.0 1.4 1.2	0.8–5.5 0.6–4.2 1.2–13.4 0.5–4.4 0.4–3.4	

Definition of abbreviations: CI = confidence interval; M. avium = Mycobacterium avium.

*Some case-control pairs had more than one control. Positives were samples with at least nontuberculous mycobacteria isolate.

[†]Adjusted for age > 80 years.

[‡]Adjusted for age, race, and education level.

Having "any NTM" in shower aerosol associated with MAC-PD

Tzou et al. Ann Am Thor Soc 2019

-Environment & Exposures

Association between MAC-PD and Mycobacteria in Home Water and Soil: A Case-Control Study

Table 2. Association of residential *M. avium* complex and *M. avium* complex pulmonary disease by point-of-use source

Household site	N (Positive)*		Unadjusted Analysis		Age-adjusted Analysis [†]		Fully Adjusted Analysis [‡]	
	Cases	Control Subjects	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI
Bathroom faucet Kitchen faucet	40 (15) 40 (15)	48 (11) 48 (14)	1.8 1.2	0.7-4.5	1.7 1.1	0.6-4.5	1.8 1.2	0.6-4.9 0.5-2.8
Shower aerosols Indoor soil Outdoor soil	39 (10) 30 (7) 39 (8)	46 (6) 38 (4) 46 (8)	2.6 1.9 1.0	0.7–10.4 0.5–6.4 0.3–3.1	<u>2.9</u> 1.3 0.9	0.7–12.5 0.3–5.0 0.3–2.8	2.9 1.1 0.9	0.7–12.4 0.3–4.5 0.3–2.8

Definition of abbreviations: CI = confidence interval; M. avium = Mycobacterium avium.

*Some case-control pairs had more than one control. Positives were samples with at least nontuberculous mycobacteria isolate.

[†]Adjusted for age > 80 years.

[‡]Adjusted for age, race, and education level.

Having "MAC" in shower aerosol associated (not statistically significantly) with MAC-PD

Tzou et al. Ann Am Thor Soc 2019

-Environment & Exposures

Drinking water characteristics and NTM-PD in Ontario, Canada

- Objective: assess for associations between drinking water characteristics and frequency of NTM isolation and disease
- Unit of study drinking water distribution regions
 - Mapped water/treatment attributes to combined census areas for areas served by the 42 largest ON drinking water distribution systems (~75% of the population ~9.5M people)
- **Predictor variables** = Water variables
 - Source-type (surface-containing n=35 vs exclusively ground n=7)
 - Secondary disinfectant (chloramine n=11 vs chlorine n=31)
 - Trihalomethane and nitrogen levels
 - Heterotrophic plate count (HPC)
 - Coliform CFU's
- **Outcome variables** = Period prevalence of NTM-PD (standardized incidence ratios)
 - May 2010 June 2015
 - Expected based on provincial average, adjusted for age, sex and population
 - M. avium, M. xenopi, M. intracellulare, and M. abscessus

Minnery et al. ATS Meeting 2017

Results

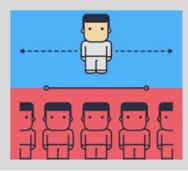
NTM pulmonary disease, Ontario 2010-2015

Spacias	Number patients		
Species	(period prevalence / 100,000)		
M. avium	3806 (28.2)		
M. xenopi	1057 (7.8)		
M. intracellulare	497 (3.7)		
M. abscessus	185 (1.4)		

Mid-point population 13.5 M

Results

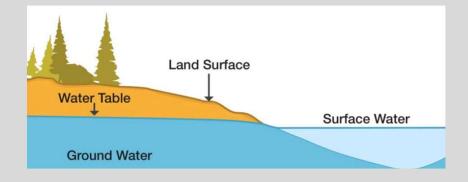
NTM-PD by Population density§


	M. avium	M. xenopi	M. intracellulare	M. abscessus
R R [†]	1.51 (1.12 <i>,</i> 2.03)	1.42 (1.09, 1.85)	0.92 (0.70, 1.22)	0.92 (0.70, 1.22)
P ^{unadj}	0.0005	0.002	0.12	0.65
P ^{adj}	0.004	0.01	0.60	1.0

[§] Median (IQR) 1,115 (587 - 1,558); range 127-4,239

⁺ Unit for analysis - 1000 people / km2

^unadj – unadjusted, ^adj – adjusted for multiple comparisons via False Discovery Rate method


Results

Source water

Surface/Mixed (n=35) vs Ground (n=7): NTM-PD

	M. avium	M. xenopi	M. intracellulare	M. abscessus
RR	1.82 (0.44, 7.53)	7.85 (1.00, 61.9)	1.44 (0.68, 3.05)	0.53 (0.22, 1.25)
P ^{unadj}	0.45	0.02	0.37	0.08
P ^{adj}	1.0	0.18	1.0	0.56

^unadj – unadjusted, ^adj – adjusted for multiple comparisons via False Discovery Rate method

Results

Secondary disinfection

Chloramine (n=11) vs Chlorine (n=31): NTM-PD

	M. avium	M. xenopi	M. intracellulare	M. abscessus			
RR	1.41 (0.62, 3.2)	1.06 (0.55, 2.03)	1.17 (0.73, 1.90)	1.80 (0.86, 3.76)			
P ^{unadj}	0.05	0.28	0.48	0.08			
P ^{adj}	0.40	1.0	1.0	0.60			
^unadj –	^unadj – unadjusted, ^adj – adjusted for multiple comparisons via False Discovery Rate method						

Treated water quality (microbial content)

Heterotrophic Plate Count[§]

	M. avium	M. xenopi	M. intracellulare	M. abscessus
R R [†]	0.60 (0.37, 0.96)	0.49 (0.31, 0.77)	1.08 (0.87, 1.34)	0.59 (0.36, 0.97)
P ^{unadj}	<0.0001	<0.0001	0.25	0.02
P ^{adj}	<0.0001	<0.0001	0.50	0.08

[§] Median (IQR) 4.1 (1.7 - 13); range 0.67-34 cfu/mL

⁺ Unit of analysis 10 cfu/mL

^unadj – unadjusted, ^adj – adjusted for multiple comparisons via False Discovery Rate

Results

Treated water quality (microbial content)

Total Coliforms[§] (cfu/100 mL)

	M. avium	M. xenopi	M. intracellulare	M. abscessus
R R [†]	1.94 (0.31, 12.3)	1.46 (0.29, 7.34)	0.22 (0.06, 0.73)	4.66 (0.79, 27.6)
P ^{unadj}	0.49	0.65	0.02	0.10
P ^{adj}	0.69	0.71	0.10	0.22

§ Median (IQR) 0.014 (3.7x10⁻⁵ – 0.00033); range 0-0.0011 cfu/100 mL

⁺ Unit of analysis cfu/100 mL

^unadj – unadjusted, ^adj – adjusted for multiple comparisons via False Discovery Rate n

Results

Results

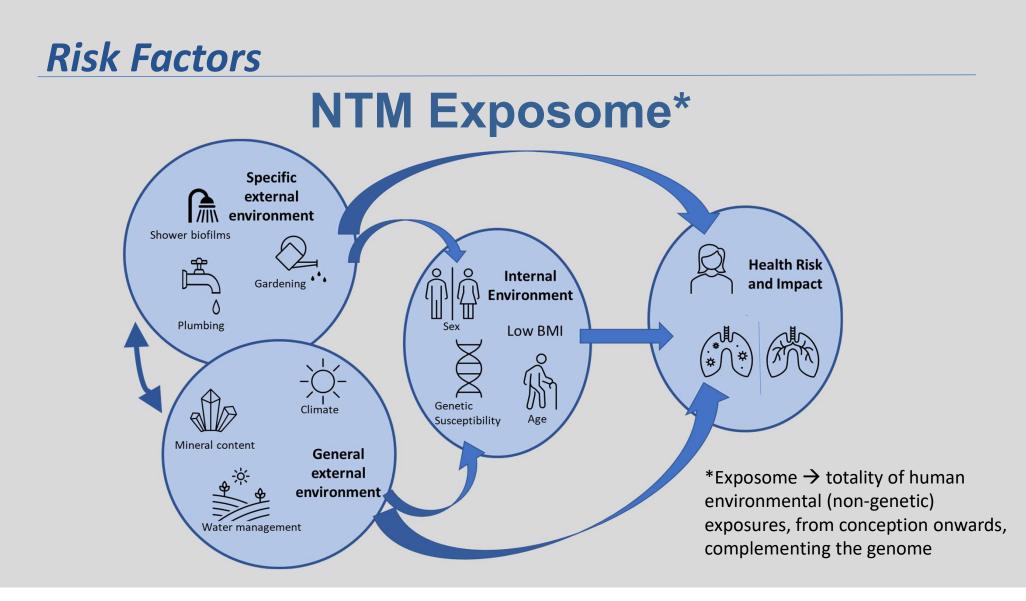
Treated water quality (nutrients)

	M. avium	M. xenopi	M. intracellulare	M. abscessus
Tuibalamathanas	0.98 (0.95, 1.00)	0.97 (0.95, 0.99)	1.00 (0.99, 1.01)	0.99 (0.97, 1.01)
Trihalomethanes §	P = 0.11 / 0.37	P = 0.011 / 0.05	P = 0.93 / 0.93	P = 0.24 / 0.45
Nitrogen ⁺ (from	0.88 (0.56, 1.4)	0.71 (0.38, 1.33)	1.05 (0.82, 1.33)	0.93 (0.69, 1.27)
nitrate and nitrite)	P = 0.60 / 0.92	P = 0.29 / 0.80	P = 0.71 / 0.93	P = 0.66 / 0.93

[§] Surrogate of dissolved organic carbon – median (IQR) 27 (16-45); range 6.5-77 ppb; analyzed per ppb [†]Surrogate of nutrient levels – median (IQR) 0.31 (0.13-0.42); range 0.013-5.9 ppm; analyzed per ppm p-values presented as unadjusted / **adjusted** for multiple comparisons via False Discovery Rate method

Results Summary

- Population density positively associated with *M. avium* (1.5) and *M. xenopi* (1.4) per 1000 people/km²- statistically significant
- Surface/mixed water source positive associations with *M. xenopi* (7.9), *M. avium* (1.8) not statistically significant
- **Chloramine (vs chlorine)** secondary disinfection possibly some association with *M. avium* (1.4) and *M. abscessus* (1.8) not statistically significant
- **HPCs** inverse association with *M. avium* (0.6) and *M. xenopi* (0.5) statistically significant; *M. abscessus* (0.6) not statistically significant
- Coliform counts positive associations with *M. avium* (1.9), *M. xenopi* (1.5), *M. abscessus* (1.7) not statistically significant
- **THMs, nitrogen** (surrogates of water nutrients) no observed association with NTM-PD


Wrap up

Limitations

- Sample size (n=42) analysis at the level of the water distribution system
- Multiple comparisons
- Limited data on *M. abscessus, M. intracelllulare* few cases
- Lacked clinical data to define NTM-PD

Conclusions

- Water characteristics are associated with NTM-PD
- HPCs and possibly surface/mixed water sources and chloramine secondary disinfection associated with NTM-PD

Transmission?

- Historical assertion: no public health concerns
- Theoretical risk of interpersonal transmission
 - High burden patient, close contact with highly susceptible person
 - Unproven
- *M. abscessus,* subspecies massiliense
 - 22 year old man with CF moved into Seattle program
 - 8 months later, 4 additional CF patients newly-identified with Mabs ssp. massiliense
 - Isolates indistinguishable by PFGE
 - Authors hypothesized either direct patient-to-patient spread or indirectly through contamination of clinic environment

Genetically similar *M. abscessus* isolates from different patients, regions

Whole genome sequencing studies demonstrated high degrees of genetic similarity between Mabs isolates from different patients; generally limited environmental sampling and traditional contact opportunity investigation

Bryant et al. Science 2016

• "Using whole-genome analysis of a global collection of clinical isolates, we show that the majority of *M. abscessus* infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally."

Tettelin et al. Emerg Infect Dis 2014

 "High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks"

Bryant et al. Lancet 2013

 "WGS revealed frequent transmission of...NTM between patients with CF despite conventional crossinfection measures. Although the exact transmission route is yet to be established, our epidemiological analysis suggests that it could be indirect."

Clinical & Environmental and Epidemiological Investigations Required

Gross et al. Am J Respir Crit Care Med 2023

- M. avium in Colorado adult CF program; clusters identified; some epi links present; no environmental matches, limited sampling
- Concluded more standardized epi / environmental investigations required

Van Tonder et al. Eur Respir J, 2023

- Single London Specialty hospital, 996 MAC isolates from 354 patients isolated yielding multiple putative clusters, most without epi links (indirect transmission?)
- Lacked environmental sampling

Gross et al. Ann Am Thor Soc 2023

- Vermont adult CF program
- 2 clusters (M. avium & M. intracellulare ssp. chimaera), both had epi links
- Water fountain M. intracellulare ssp. chimaera appeared to be a source for a cluster

Programmatic concerns, despite uncertain risks

- Congregate settings clinics, wards
- High-risk cohorts CF
- More difficult organisms (*M. abscessus*)
- CF IPAC

 Patients with CF with M. abscessus colonisation/infection must be segregated from each other and from all other people with CF. The methods used to segregate patients should be determined by local guidelines and must take into account communal areas such as pharmacy and radiology [C]*

*Grade C evidence - expert committee reports or opinions and/or clinical experience of respected authorities (absence of directly applicable studies of good quality)

• CF Mabs Infection Control Working Group Report (cysticfibrosis.org.uk)

Patient-level, comprehensive

Objective - Healthcare costs attributable to NTM-PD (payer perspective), Ontario, Canada **Methods -** Matched cohort

- Incident NTM-PD patients 2002–2012 (linked lab + health admin data)
- Matched to population controls (1:3) on age, sex, index date, propensity score (including measures of rurality, income, comorbidities).
- Phase-of-care specific attributable costs for acute and long-term illness (initial, subsequent, continuous, final)

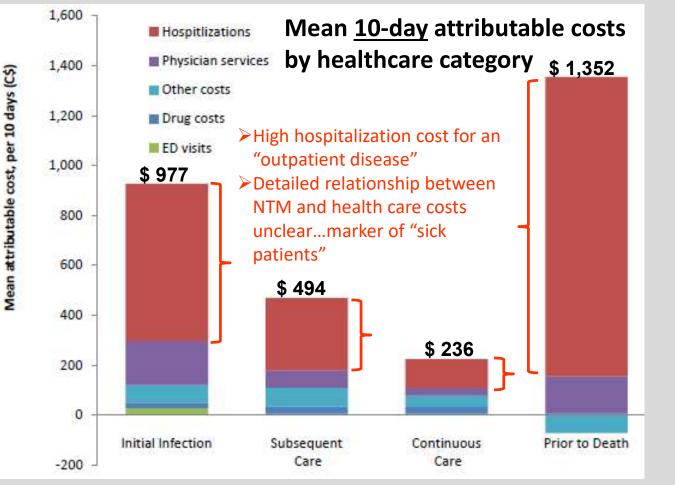
Patient-level, comprehensive

Objective - Healthcare costs attributable to NTM-PD (payer perspective), Ontario, Canada **Methods -** Matched cohort

- Incident NTM-PD patients 2002–2012 (linked lab + health admin data)
- Matched to population controls (1:3) on age, sex, index date, propensity score (including measures of rurality, income, comorbidities).
- Phase-of-care specific attributable costs for acute and long-term illness (initial, subsequent, continuous, final)
 Characteristic
 NTM-PD
 Continuous

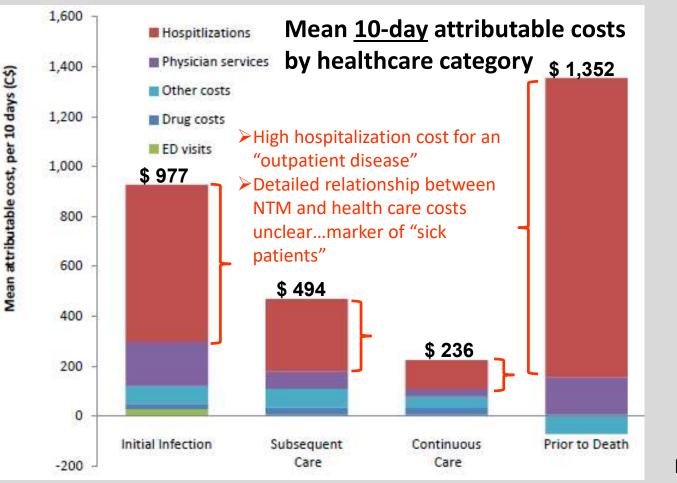
Characteristic	NTM-PD	Controls
Ν	7,243	21,729
Mean age at index	66	66
Female sex	50.7%	50.7%

Patient-level, comprehensive


Objective - Healthcare costs attributable to NTM-PD (payer perspective), Ontario, Canada Methods - Matched cohort

- Incident NTM-PD patients 2002–2012 (linked lab + health admin data)
- Matched to population controls (1:3) on age, sex, index date, propensity score (including measures of rurality, income, comorbidities).
- Phase-of-care specific attributable costs for acute and long-term illness (initial,

subseq	uent, continuous, final)	Characteristic	NTM-PD	Controls	
		Ν	7,243	21,729	
		Mean age at index	66	66	
		Female sex	50.7%	50.7%	
Phase	Start Date	End Date			
Initial	Index (30 days before lab date)	60 days post index / Death / End observation period			
Subsequent	61 days post index	150 days post index date			
Continuous	151 days post index	Start of final phase / End observation period			
Final	70 days before death	Death date			


Ramsay et al. Emerg Infect Dis 2020

Patient-level, comprehensive

Ramsay et al. Emerg Infect Dis 2020

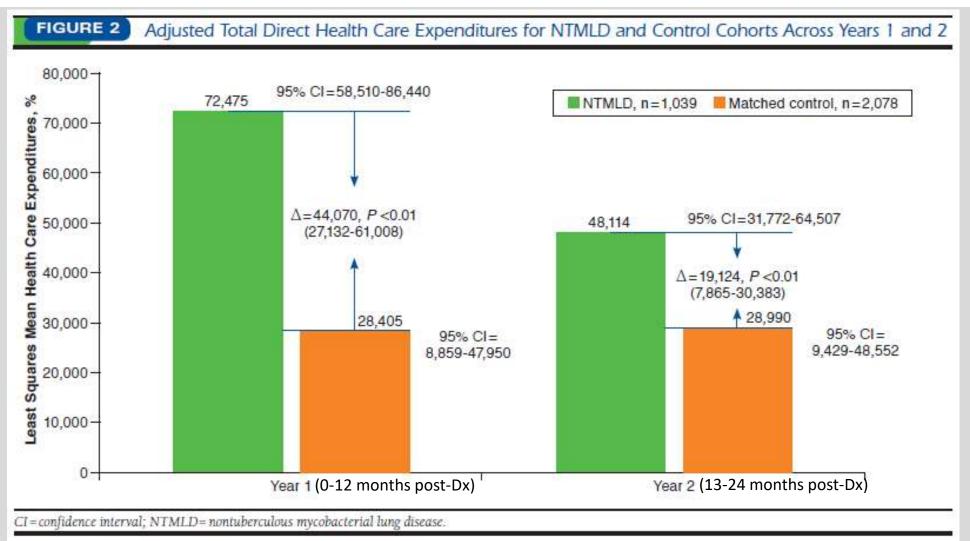
Patient-level, comprehensive

Attributable mean 1-year cost (adjusted for survival): CAD \$14,953 (USD \$11,541)

Ramsay et al. Emerg Infect Dis 2020

Patient-level, comprehensive

Objective


 Study healthcare expenditure among patients with newly diagnosed NTM-PD, and estimate expenditure attributable to NTM-PD in the US

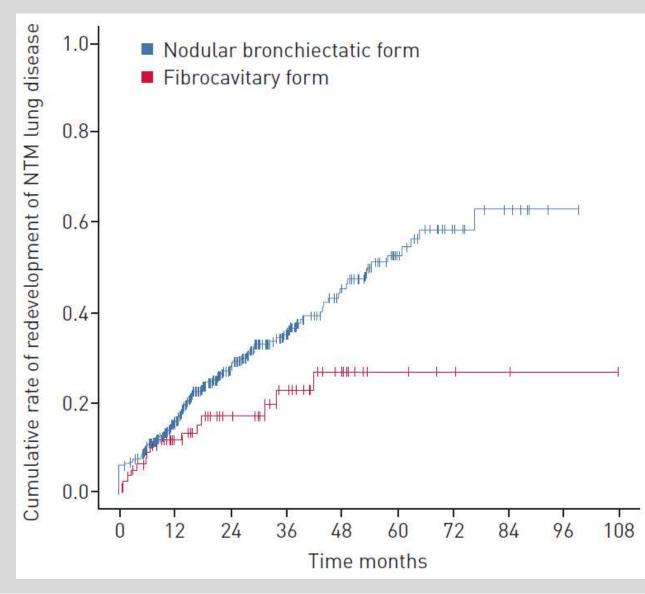
Methods

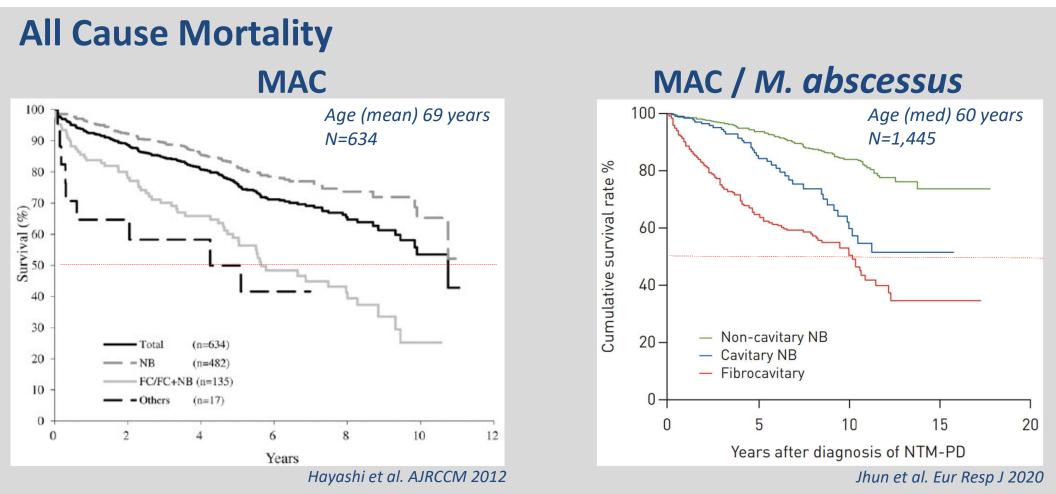
- Matched cohort
- Large managed care insurance database, incident NTM-PD by diagnostic claim codes, matched 2:1 by age, sex, coverage period
- Expenditures adjusted for all comorbid illnesses and Charlson Comorbidity Index (CCI)

	Patients with NTMLD (n=1,039)	Controls (n=2,078)	P Value ^b
Age, mean (SD)	68 (14.1)	68 (14.1)	
Female, % (n)	67 (699)	67(1,392)	
CCI score, mean (SD)	2.0 (2.16)	0.5 (1.25)	< 0.001

Marras et al. J Manag Care Spec Pharm 2018

Sensitivity analysis: propensity score matching, difference reduced to an average of \$5,296 per year (averaged over both follow-up years)


NTM outcomes


- Minority treated
 - 18% US HMO study (*Prevots, AJRCCM 2010*)
 - 20-24% ON population (Brode, ATS meeting 2018)
- Treatment "success" (MAC)
 - 52-66% systematic review (Diel et al. Chest 2018)
 - 60% systematic review and meta-analysis (Kwak et al. Clin Infect Dis 2017)
- Recurrence
 - 14 months 30% (Koh et al. Eur Respir J 2017)
 - 48 mo 50% (Wallace et al. Chest 2014)

NTM-PD outcomes

- Recurrence

Koh et al. Eur Respir J 2017



	Median Survival	
~ 11 years	NB	> 15 years
~ 5.5 years	Cavitary (FC / cavitary NB)	~ 12 years

MAC-PD

All cause mortality

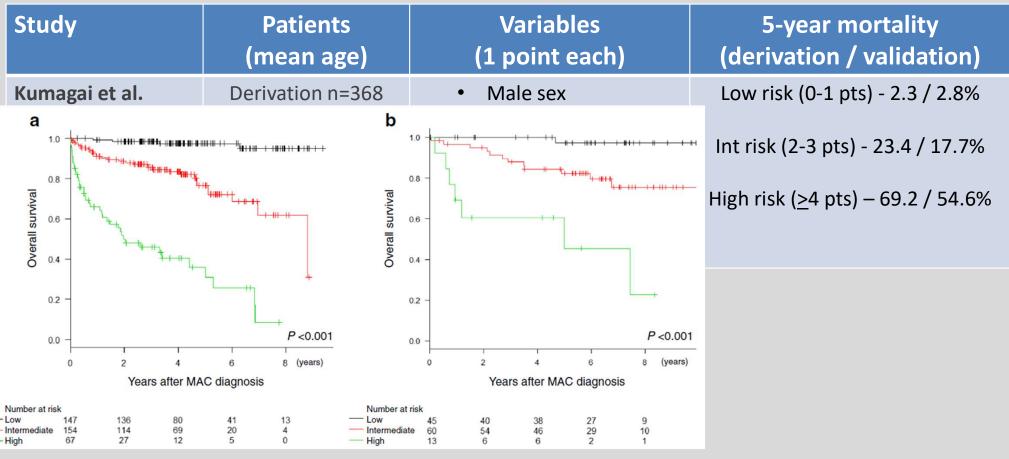
MAC-PD mortality

N=634, mean age 69 years

Hayashi et al. AJRCCM 2012

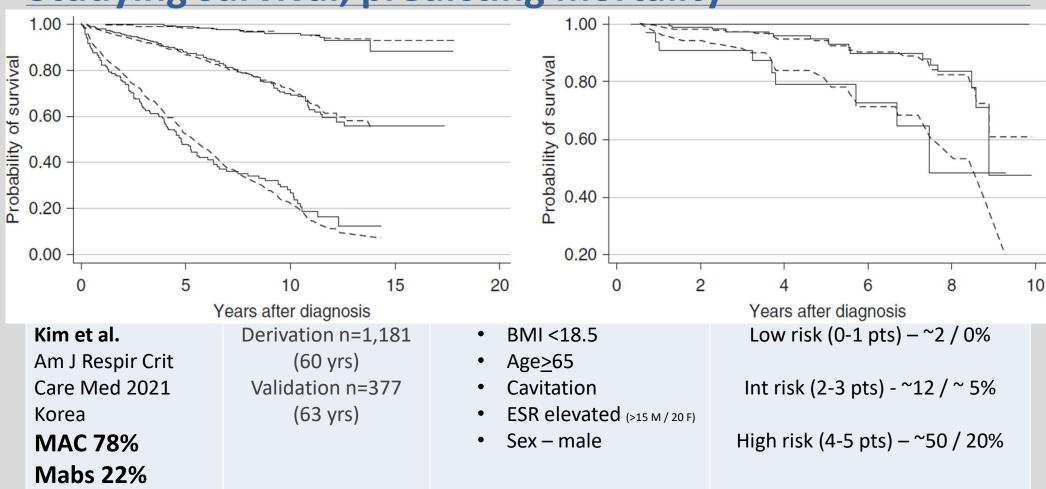
NTM-PD Survival, Ontario, Canada

Group	Total	1-year Survival	5-year Survival	Hazard ratio (95% CI)
NTM	8469	85.8%	65.6%	1.63 (1.56-1.70)
Control	8469	95.0%	78.7%	
MAC	5543	86.6%	66.7%	1.57 (1.48-1.66)
Control	5543	94.8%	78.5%	
M. xenopi	1975	82.3%	59.9%	1.84 (1.69-2.01)
Control	1975	95.0%	77.7%	
M. abscessus	201	92.0%	79.2%	1.49 (1.00-2.21)
Control	201	95.5%	87.3%	


Population-based, incident NTM, matched by age, sex, index date, propensity score

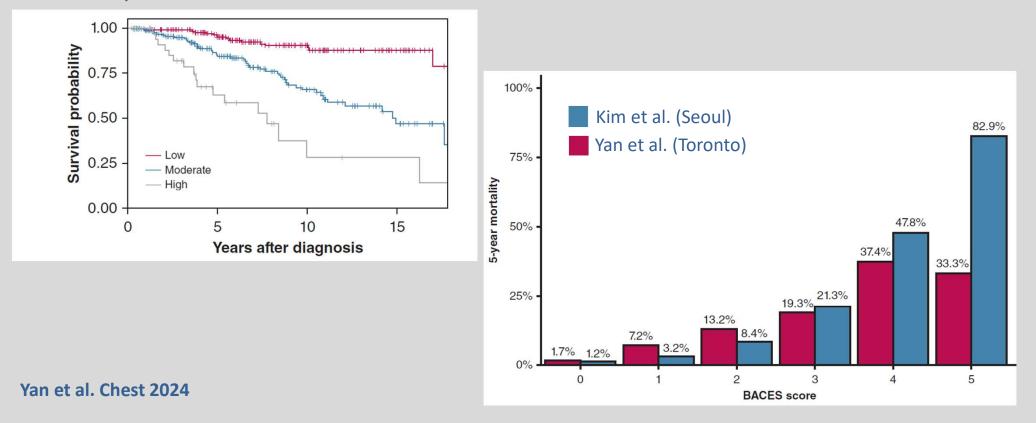
Marras et al. Emerg Infect Dis 2017

Prognostic indices


Study	Patients	Variables	5-year mortality
	(mean age)	(1 point each)	(derivation / validation)
Kumagai et al. BMC Infect Dis 2017 Japan MAC	Derivation n=368 (72 yrs) Validation n=118 (70 yrs)	 Male sex Age >70 Malignancy BMI <18.5 Lymphocytes <1 Albumin <35 FC pattern 	Low risk (0-1 pts) - 2.3 / 2.8% Int risk (2-3 pts) - 23.4 / 17.7% High risk (<u>></u> 4 pts) – 69.2 / 54.6%

Prognostic indices

Prognostic indices


Study	Patients (mean age)	Variables (1 point each)	5-year mortality (derivation / validation)
Kumagai et al. BMC Infect Dis 2017 Japan MAC	Derivation n=368 (72 yrs) Validation n=118 (70 yrs)	 Male sex Age ≥70 Malignancy BMI <18.5 Lymphocytes <1 Albumin <35 FC pattern 	Low risk (0-1 pts) - 2.3 / 2.8% Int risk (2-3 pts) - 23.4 / 17.7% High risk (≥4 pts) – 69.2 / 54.6%
Kim et al. Am J Respir Crit Care Med 2021 Korea MAC 78% Mabs 22%	Derivation n=1,181 (60 yrs) Validation n=377 (63 yrs)	 BMI <18.5 Age >65 Cavitation ESR elevated (>15 M / 20 F) Sex – male 	Low risk (0-1 pts) – ~2 / 0% Int risk (2-3 pts) - ~12 / ~ 5% High risk (4-5 pts) – ~50 / 20%

	Characteristic	Overall (N = 435)
DACEC Internetional Validation	Age, y	64 (55-71)
BACES International Validation	Sex	
Toronto, Canada	Male	113 (26)
Derivation cohort	Female	322 (74)
3	Ethnicity	
	White	297 (68)
Yan et al. Chest 2024	East Asian	95 (22)
150 - Kim et al.	South Asian	28 (6.4)
126 (29%) 114 (26%)	Other ^b	6 (1.4)
	Missing	9 (2.1)
114 (26%) 100 - 1 2 3 4 5 100 - 80 (18%) 50 - 50 - 29 (7%)	BMI, kg/m ²	21.5 (19.0-24.6)
	History of tuberculosis	42 (9.7)
4 50 - 29 (7%)	NTM species	
ž 8 (2%)	MAC	60 (14)
	M avium	288 (66)
0 1 2 3 4 5	M intracellulare	44 (10)
BACES score	M abscessus	43 (9.9)

BACES International Validation

Toronto, Canada

