

National Jewish Health<sup>®</sup> Breathing Science is Life.

Steven Lommatzsch, MD Associate Professor of Medicine Director, Non-CF Bronchiectasis Program Division of Pulmonary, Critical Care and Sleep Medicine National Jewish Health NTM Lecture Series for Patients and Families

April 27, 2024

## **Overview of Bronchiectasis**

- What is bronchiectasis
- How does one get bronchiectasis
- How is bronchiectasis treated
- Why is bronchiectasis relevant to Mycobacterial infection



## **Normal Lung**





## What is Bronchiectasis

# From the Greek "bronkhos" (windpipe or bronchial tubes) and "ektasis" (dilatation)<sup>1</sup>

**Normal Bronchial Airway** 





1. Chalmers JD. Chest. 2017;151:1204-1206.

## What is Bronchiectasis

From the Greek "bronkhos" (windpipe or bronchial tubes) and "ektasis" (dilatation)<sup>1</sup>





1. Chalmers JD. Chest. 2017;151:1204-1206.

## What is Bronchiectasis

# From the Greek "bronkhos" (windpipe or bronchial tubes) and "ektasis" (dilatation)<sup>1</sup>





1. Chalmers JD. Chest. 2017;151:1204-1206.

## **Facts about Bronchiectasis**

- Estimated that 350,000 to 500,000 adults in the US have the condition
- The condition is twice as common in women than men
- The disease increases in prevalence with increasing age
- The average number of times patients need to see their doctor in clinic to treat a respiratory illness is between 1 and 3 per year
- On average a patient with severe bronchiectasis is hospitalization once per year





- Symptoms may be common to many respiratory diseases
  - Cough, sputum production, shortness of breath, etc
  - Often takes exacerbation or acute event to come to appropriate medical attention
- Many diseases can cause bronchiectasis
- True diagnosis requires radiographic imaging with computed tomography ("CT scan")



## **Symptoms of Bronchiectasis**

- Cough (98%)
- Chronic sputum production (78%)
- Dyspnea (62%)
- Fatigue (43%)
- Hemoptysis (27%)
- Wheezing (20%)



## **Causes of Bronchiectasis**

#### CONGENITAL

CY

- Tracheobronchomegaly
- Cartilage deficiency
- Pulmonary sequestration
- Yellow nail syndrome
- Young's syndrome
- Alpha-1 antitrypsin deficiency
- Primary ciliary dyskinesia
- Cystic fibrosis

#### IMMUNODEFICIEN • Hypogammaglobulinemia

- CLL
- Chemotherapy
- Immunosuppression

#### POSTINFECTIOUS • Bacteria

- Mycobacterium
- Aspergillus
- Viruses

| RHEUMATOLOGIC             | • RA<br>• SLE<br>• Sjögren's syndrome<br>• Relapsing polychondritis<br>• IBD |
|---------------------------|------------------------------------------------------------------------------|
| ASPIRATION/<br>INHALATION | <ul><li>Chlorine</li><li>Overdoses</li><li>Foreign bodies</li></ul>          |
| Other                     | • ABPA                                                                       |

Abbreviations: ABPA, allergic bronchopulmonary aspergillosis; CLL, chronic lymphocytic lymphoma; IBD, inflammatory bowel disease; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.



## Imaging is Essential to Diagnosis

- Chest X-rays
- Chest CT scans







Example of normal chest CT scan



## **CT Scan Makes the Diagnosis**



Hill AT, et al. Thorax. 2019;74:1-69.

## CT Features (≥1 of the following)

- Bronchoarterial ratio >1 (internal airway lumen/adjacent pulmonary artery) on CT scan
- Lack of airway tapering
- Airway visibility ≤1 cm of costal pleural surface or touching mediastinal pleura



## **Types of Bronchiectasis seen on CT scan**

#### Saccular/cystic

## Cylindrical/tubular

## Varicose





## **Other Testing**

- "Breathing Test" Spirometry
- Sputum cultures
  - Sometimes bronchoscopy
- Laboratory bloodwork
  - CBC and diff
  - RF/CCP, SSA, SSB, ANA, ANCA
  - IgE (initial per BTS)
  - Aspergillus precipitins (initial per BTS)
  - IgG, IgA, and IgM (initial per BTS)
  - Consider HIV testing
  - A1AT level/genotype
  - Antibody titers to pneumococcal vaccination (consider work-up per BTS)
  - Testing for PCD and CF (CF is first line per BTS if under 40yo)

| SPIROMETRY            | Pred LLN   | Actual | % Pred |
|-----------------------|------------|--------|--------|
| FVC (L)               | 3.57 2.85  | 3.96   | 110    |
| FEV1 (L)              | 3.08 2.47  | 2.84   | 92     |
| FEV1/FVC (%)          | 86.4674.73 | 71.75  | 82     |
| FEF Max (L/sec)       | 6.68 5.06  | 7.24   | 108    |
| FEF 25-75% (L/sec)    | 3.60 2.36  | 1.98   | 55     |
| FIF Max (L/sec)       | 4.24       | 5.24   | 123    |
| FEF50%/FIF50% (%)     | 90-100     | 50     |        |
| Expiratory Time (sec) |            | 6.80   |        |
| Back Extrap Vol (L)   |            | 0.08   |        |
| FIVC (L)              |            | 3.25   |        |



## **Treatment and Management Gaps**

- There are currently no guidelines for the management of bronchiectasis in the United States
  - British Thoracic Society guideline, 2019 (updated from 2010)<sup>1</sup>
  - Thoracic Society of Australia and New Zealand position statement, 2023 (updated from 2015)<sup>2</sup>
  - European Respiratory Society guidelines, 2017<sup>3</sup>
- There are no therapies that are currently FDA-approved for the airway condition of bronchiectasis
- Much of the treatment of NCFBE has been influenced by cystic fibrosis research and management recommendations



## **Treatment Starts With Identifying Cause**

| Condition / Disease                                                             | Treatment                         |
|---------------------------------------------------------------------------------|-----------------------------------|
| ABPA                                                                            | Oral steroids +/- oral antifungal |
| Alpha-1 antitrypsin deficiency                                                  | Alpha-1 protein replacement       |
| Aspiration/GERD                                                                 | Treat GERD and speech therapy     |
| Cystic fibrosis                                                                 | CFTR modulator therapy            |
| Immunodeficiency (CVID)                                                         | IVIg replacement therapy          |
| Infection (TB, NTM, etc)                                                        | Antibiotics                       |
| Rheumatologic/Autoimmune/<br>Inflammatory Diseases<br>(RA, Sjogren's, IBD, etc) | Immunosuppression                 |

Abbreviations: ABPA, allergic bronchopulmonary aspergillosis; CFTR, cystic fibrosis transmembrane conductance regulator; CVID, common variable immunodeficiency; GERD, gastroesophageal reflux disease; IBD, inflammatory bowel disease; IVIg, intravenous immunoglobulin; NTM, nontuberculous mycobacteria ; RA, rheumatoid arthritis; TB, tuberculosis.



## **Targeted Treatment—The Vicious Vortex**



## The 3 Cornerstones of Management

- 1. Airway clearance
- 2. Airway clearance
- 3. Airway clearance

Amazingly this cornerstone is often forgotten and overlooked!



## **Components of Treatment**

# Mucus Management Inflammation Attenuation Infection Control

- Decreases progression of airway distortion and scarring
- Maintains better lung function

- Helps control patient symptoms
- Prevents illness / hospitalization
- Decreases likelihood of needing oxygen therapy



## **Airway Clearance - Mechanical**

- Manual Chest Physiotherapy
- Active Cycle Breathing, Autogenic drainage, Huff Coughing
- Postural Drainage
- Positive expiratory pressure devices
- Oscillating devices, Highfrequency chest wall oscillation, Flutter, Acapella devices
- Inspiratory muscle training
- Aerobic training/exercise



## **Airway Clearance - Pharmacologic**

- Hypertonic saline (0.9%, 3%, 7%, 10%)
  - HR-QOL, 6MWT improvement, decrease healthcare utilization
- N-acetylcysteine (NAC) or "Mucomyst" nebulization
- Bronchodilator therapy SABA before saline / airway clearance



## I've heard it all....

- "I can cough it up, so I don't need to do my airway clearance."
- "I do not get anything up when I use it, so I stopped."
- "I use it when I start to get sick."



 If bronchiectasis is a disease of distorted airways getting plugged with mucus and trapping bacteria in that mucus, then the treatment starts with getting that mucus out to clear the lung of bacteria/infection.



## **Inflammation Attenuation**

## Azithromycin daily therapy

- Decrease exacerbations
- Reduces Sputum Production
- Improve lung function
- Improve Quality of Life

"Macrolide" antibiotics are:

- Azithromycin
- Clarithromycin
- Erythromycin

It is important to **exclude** NTM infection with sputum cultures prior to starting therapy to avoid breeding resistance!





- Treat Exacerbations
- Chronic suppressive inhaled antibiotic treatment
- NTM MYCOBACTERIAL THERAPY



## **Monitoring and Follow-up**

- Regular visits with symptom assessments
- Spirometry clinic based / home spirometry
- Sputum cultures
- Imaging / CT imaging (radiographic progression)
- Re-education and goals discussions



## **Future Treatments**

- Treatments that decrease neutrophil activity
- Biologic agents target inflammation
- Nebulized immunoglobulin therapy
- Inhaled ascorbic acid and glutathione
- CFTR potentiator therapy
- Novel antimicrobial development





• Any questions?

